Alvarez is a Mars-crossing asteroid, a dynamically unstable group between the main belt and the near-Earth populations, crossing the orbit of Mars at 1.66 AU.[1][2] However, due to the high inclination of its orbit, it never actually passes through the orbit of Mars since at perihelion it is well away from Mars' orbital plane.[11] It orbits the Sun at a distance of 1.7–3.9 AU once every 4 years and 7 months (1,689 days; semi-major axis of 2.78 AU). Its orbit has an eccentricity of 0.41 and an inclination of 29° with respect to the ecliptic.[2] The body's observation arc begins with its first observation as 1962 JL at Goethe Link Observatory in May 1962, almost 23 years prior to its official discovery observation at Palomar.[1]
In September 2004, a rotational lightcurve of Alvarez was obtained from photometric observations by American photometrist William Koff at the Antelope Hills Observatory (H09) in Bennett, Colorado. Lightcurve analysis gave a longer-than-average rotation period of 33.42±0.02 hours with a small brightness amplitude of 0.06±0.02magnitude (U=2), indicative of a spherical rather than elongated shape.[5][a] The result supersedes a previous period determination by Wiesław Wiśniewski from 1990, which gave a period of at least 24 hours (U=1).[10]
Diameter and albedo
According to the survey carried out by the NEOWISE mission of NASA's Wide-field Infrared Survey Explorer, Alvarez measures 13.69 kilometers in diameter and its surface has an albedo of 0.113.[4] Previously published WISE data from 2013 and 2016 gave a concurring diameter of 14 and 13.7 kilometer with an albedo of 0.14 and 0.13, respectively.[8][6] The Collaborative Asteroid Lightcurve Link assumes an albedo of 0.057 and derives a diameter of 18.43 kilometers based on an absolute magnitude of 12.4.[3]
^ abLightcurve plot of (3581) Alvarez, Antelope Hills Observatory (H09) rotation period 33.42±0.02 hours with a brightness amplitude of 0.06±0.02 mag. Quality code is. Summary figures for (3581) Alvarez at the LCDB
^ abKoff, Robert A. (June 2005). "Lightcurve photometry of asteroids 212 Medea, 517 Edith, 3581 Alvarez 5682 Beresford, and 5817 Robertfrazer". The Minor Planet Bulletin. 32 (2): 32–34. Bibcode:2005MPBu...32...32K. ISSN1052-8091.
^Pravec, Petr; Harris, Alan W.; Kusnirák, Peter; Galád, Adrián; Hornoch, Kamil (September 2012). "Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations". Icarus. 221 (1): 365–387. Bibcode:2012Icar..221..365P. doi:10.1016/j.icarus.2012.07.026.
^ abWisniewski, W. Z.; Michalowski, T. M.; Harris, A. W.; McMillan, R. S. (April 1997). "Photometric Observations of 125 Asteroids". Icarus. 126 (2): 395–449. Bibcode:1997Icar..126..395W. doi:10.1006/icar.1996.5665.
^de Leon, Julia; Campins, H.; Tsiganis, K.; Morbidelli, A.; Licandro, J. (October 2010). "Origin Of The Near-earth Asteroid Phaethon And The Geminids Meteor Shower". American Astronomical Society. 42: 1058. Bibcode:2010DPS....42.1327D.