2013 Rally Liepāja
|
Read other articles:
Dalam artikel ini, pertama atau paternal nama keluarganya adalah Corberó dan nama keluarga maternal atau keduanya adalah Delgado. Úrsula CorberóCorberó, 2018LahirÚrsula Corberó Delgado11 Agustus 1989 (umur 34)Barcelona, Catalonia, SpanyolPekerjaanAktrisTahun aktif2002–sekarangPasanganChino Darín(2016–sekarang) Úrsula Corberó Delgado (lahir 11 Agustus 1989) adalah seorang aktris asal Spanyol.[1][2] Dia dikenal di Spanyol karena memerankan Ruth Gó...
Asosiasi Sepak Bola MontenegroUEFADidirikan1931Bergabung dengan FIFA2007Bergabung dengan UEFA2007PresidenDejan SavićevićWebsitehttp://www.fscg.co.me Asosiasi Sepak Bola Montenegro (bahasa Inggris: Football Association of Montenegro) (Montenegrin: Fudbalski savez Crne Gore; Cyrillic: Фудбалски савез Црне Горе) adalah badan pengendali sepak bola di Montenegro. Asosiasi ini mengorganisasi Liga Pertama Montenegro, Piala Montenegro dan tim nasional sepak bola Montenegro. As...
This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (January 2018) (Learn how and when to remove this template message) Seven Generations Education InstituteMottoCulturally enriched quality education for allTypeAboriginal-owned and controlled education institutionEstablished1985 as Rainy Lake Ojibway Education Author...
Kazuki TakahashiTakahashi pada tahun 2005LahirTakahashi Kazuki (高橋 和希)(1961-10-04)4 Oktober 1961Tokyo, JepangMeninggal6 Juli 2022(2022-07-06) (umur 60)Nago, Okinawa, JepangNama lainKazuo Takahashi (高橋 一雅code: ja is deprecated , Takahashi Kazuo)PekerjaanSeniman manga animator, sutradara dan penulis animeTahun aktif1981–2022Dikenal atasYu-Gi-Oh!Situs webstudio-dice.com Bagian dari seri tentangAnime dan manga Anime Sejarah Industri Animasi net orisinal Animasi v...
Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Women in Islam di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjema...
† Египтопитек Реконструкция внешнего вида египтопитека Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:Четвероно...
1946–48 altercations between the United Kingdom and Albania Corfu Channel incidentPart of the Cold WarCorfu Channel IncidentDate1946LocationCorfu Channel39°46′N 19°58′E / 39.77°N 19.97°E / 39.77; 19.97Result World Court case concluded in 1949 Albania ordered to pay UK£843,947 (£24.4 million in 2019) in compensation to the United Kingdom, but they did not pay. Albania agreed to pay US$2,000,000 in reparations to the United Kingdom in 1992.[1][2...
British actress and singer (1898–1983) For the rose named after her, see Rosa 'Violet Carson'. Violet CarsonOBEPublicity Photo of Violet CarsonBornViolet Helen Carson(1898-09-01)1 September 1898Ancoats, Manchester, EnglandDied26 December 1983(1983-12-26) (aged 85)Blackpool, Lancashire, EnglandOccupation(s)Actress, singer, pianistYears active1920–1980Spouse George Peploe (m. 1926; died 1929)RelativesNellie Carson (sister) Violet...
La Commune de Paris de 1871 est la période pendant laquelle le plus de journaux furent créés. Si la liberté de la presse fut restreinte, si de nombreux journaux furent supprimés, la Commune n'empêcha jamais la parution de nouveaux journaux. Ainsi, les journaux supprimés pouvaient reparaître sous un nouveau titre le lendemain. L'historien Quentin Deluermoz note : « La liberté de la presse, mise en place dès septembre 1870, est encouragée par la Commune, puis largement lim...
2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)...
OZ RadioJenisJaringan radioSloganYour Friendly StationNegaraIndonesiaBahasaBahasa IndonesiaBahasa InggrisTanggal peluncuran25 Desember 1971; 52 tahun lalu (1971-12-25)Kantor pusatJl. Setrasari II No.14, Sukarasa, Kec. Sukasari, Kota Bandung, Jawa Barat 40152Wilayah siaranNasional (lihat #Jaringan)PemilikOZ MediaAnggota jaringanlihat #JaringanSitus webwww.ozradio.id OZ Radio Bandung (PM3FHD)PT Radio Mitragamma Swara(sebelumnya PT Radio Ozza Mitragama)Wilayah siarBandung Raya dan sekitarny...
Flag of Lebanon. Map of Phoenicia. Map of Phoenicia and its Mediterranean trade routes. Christian Church and Druze Khalwa in Shuf Mountains: The Maronites and the Druze set the foundation for what is now Lebanon in the early 18th century.[1] Lebanese nationalism is a nationalist ideology which considers the Lebanese people as a separate nation independent from the Arab world and strives to maintain Lebanon as an independent nation-state. The ideology may consider the Lebanese people ...
Ancient philosophical, research and educative center, founded by Plato This article is about the academy founded by Plato. For other uses, see Academy (disambiguation). 37°59′33″N 23°42′29″E / 37.99250°N 23.70806°E / 37.99250; 23.70806 Part of a series onPlatonism Life Works Theory of forms Form of the Good Theory of soul Epistemology Political philosophy Euthyphro dilemma Demiurge Atlantis The Republic Allegory of the cave Analogy of the Sun Analogy of the...
「花剑」重定向至此。關於其他意思,請見「花劍 (消歧義)」。 此条目页的主題是在中国大陆被称为花剑的击剑项目。关于旧称为花式剑的击剑项目,請見「佩剑」。 此條目需要补充更多来源。 (2015年9月27日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:花剑 R...
Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Sepak bola putri pada Olimpiade Musim Panas 2004 – berita · surat kabar · buku · cendekiawan · JSTOR Untuk turnamen pria, lihat Sepak bola pria pada Olimpiade Athena 2004. Kembali ke: Sepak bola pada Olimpiad...
For the county, see Franklin County, Ohio. City in Ohio, United StatesFranklin, OhioCityThe old Franklin Post Office along the Great Miami River FlagSealLogoMotto: Keep It GreenLocation of Franklin, OhioLocation of Franklin in Warren CountyCoordinates: 39°33′13″N 84°17′43″W / 39.55361°N 84.29528°W / 39.55361; -84.29528CountryUnited StatesStateOhioCountyWarrenFounded1796town1814city1951Government • TypeCouncil-city manager • Mayo...
Sporting event delegationIndia at the1938 British Empire GamesCGF codeINDCGAIndian Olympic AssociationWebsiteolympic.ind.inin Sydney, AustraliaFlag bearersOpening:Closing:MedalsRanked -th Gold 0 Silver 0 Bronze 0 Total 0 British Empire Games appearances193419381950195419581962196619701974197819821986199019941998200220062010201420182022 This was the second time India participated in Commonwealth Games after previous 1934 British Empire Games in London. India participated in few events thi...
Series of non-violent protests and political campaigns in the former Soviet Union For the Colorful Revolution in the Republic of North Macedonia, see 2016 Macedonian protests. Colour revolutionsMap of the colour revolutions Revolution successful Revolution unsuccessful Protests' status as part of the colour revolutions disputedLocationPost-Soviet states, post-Yugoslav SerbiaCaused by Authoritarianism Electoral fraud Human rights violations Kleptocrac...
Supersanocomune Supersano – Veduta LocalizzazioneStato Italia Regione Puglia Provincia Lecce AmministrazioneSindacoBruno Corrado (lista civica) dal 26-5-2019 TerritorioCoordinate40°01′N 18°15′E40°01′N, 18°15′E (Supersano) Altitudine105 m s.l.m. Superficie36,41 km² Abitanti4 162[1] (31-12-2022) Densità114,31 ab./km² Comuni confinantiBotrugno, Casarano, Collepasso, Cutrofiano, Montesano Salentino, Nociglia, Ruffano, San Cas...
This article is about knot theory. For the conjecture in graph theory, see Tait's conjecture. The Tait conjectures are three conjectures made by 19th-century mathematician Peter Guthrie Tait in his study of knots.[1] The Tait conjectures involve concepts in knot theory such as alternating knots, chirality, and writhe. All of the Tait conjectures have been solved, the most recent being the Flyping conjecture. Background A reduced diagram is one in which all the isthmi are removed. Tait...