Read other articles:
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Belanja tidak terduga adalah pengeluaran anggaran untuk kegiatan yang sifatnya tidak biasa dan tidak diharapkan berulang seperti penanggulangan bencana alam, bencana sosial, dan pengeluaran tidak terduga lainnya yang sangat diperlukan dalam rangka pen...
本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...
Grumman Gulfstream I (sebutan perusahaan G-159) adalah pesawat bisnis sayap rendah (low wing) bermesin turboprop kembar. Pesawat ini pertama terbang pada tanggal 14 Agustus 1958. Setelah pertama kali menolak ide untuk mengembangkan Grumman Widgeon sebagai transportasi eksekutif, perusahaan tersebut mempelajari menghasilkan transportasi eksekutif didasarkan pada varian bertenaga turbin dari utilitas transportasi angkatan laut Grumman TF-1 Trader. Perusahaan telah menentukan setiap pesawat bar...
Architectural pattern in Ancient Egypt A typical false door to an Egyptian tomb. The deceased is shown above the central niche in front of a table of offerings, and inscriptions listing offerings for the deceased are carved along the side panels. Louvre Museum. A false door, or recessed niche,[1] is an artistic representation of a door which does not function like a real door. They can be carved in a wall or painted on it. They are a common architectural element in the tombs of ancien...
Disambiguazione – Se stai cercando altri significati, vedi Serie A 1992-1993 (disambigua). Serie A 1992-1993 Competizione Serie A Sport Calcio Edizione 91ª (61ª di Serie A) Organizzatore Lega Nazionale Professionisti Date dal 6 settembre 1992al 12 giugno 1993 Luogo Italia Partecipanti 18 Formula girone unico Risultati Vincitore Milan(13º titolo) Retrocessioni BresciaFiorentinaAnconaPescara Statistiche Miglior marcatore Giuseppe Signori (26) Incontri disputati 306...
American manufacturer and politician Lane Dwinell69th Governor of New HampshireIn officeJanuary 6, 1955 – January 1, 1959Preceded byHugh GreggSucceeded byWesley Powell Personal detailsBorn(1906-11-14)November 14, 1906Newport, VermontDiedMarch 27, 1997(1997-03-27) (aged 90)Hanover, New HampshirePolitical partyRepublicanSpouseElizabeth Cushman Dwinell Seymour Lane Dwinell (November 14, 1906 – March 27, 1997) was an American manufacturer and Republican politician from Leban...
Sulawesi BaratDaerah Pemilihan / Daerah pemilihanuntuk Dewan Perwakilan RakyatRepublik IndonesiaWilayah Daftar Kabupaten : Majene Mamasa Mamuju Mamuju Tengah Pasangkayu Polewali Mandar ProvinsiSulawesi BaratPopulasi1.447.186 (2023)[1]Elektorat985.760 (2024)[2]Daerah pemilihan saat iniDibentuk2009Kursi3 (2009—19)4 (2019—sekarang)Anggota Andi Ruskati Radjab (Gerindra) Masih lowong (PDI-P) Ratih Megasari Singkarru (NasDem) Suhardi Duka (Demokrat)D...
—— Permukiman di Uni Emirat Arab —— Al Rashidiyaالراشدية Negara Uni Emirat Arab Emirat Dubai Kota Dubai Jumlah daerah 216 Statistik permukiman Luas 4.41 km² Jumlah penduduk 22,326[1] (2000) Kepadatan penduduk 5,062 /km² Permukiman sekitarnya Umm Ramool, Bandar Udara Internasional Dubai, Nad Al Shamma, Mirdif Koordinat 26°13′39″N 55°23′29″E / 26.22750°N 55.39139°E / 26.22750; 55.39139 Al Rashidiya (Arab: الر�...
Pour les articles homonymes, voir AAH. Asaïb Ahl al-Haq Idéologie Islamisme chiiteVelayat-e faqih[1]Khomeinisme[2]Antioccidentalisme[3]AntiaméricanismeAnti-LGBTAntisionisme[4] Objectifs Instauration en Irak d'un gouvernement islamique chiite fondé sur le Velayat-e faqih Statut Actif Site web ahlualhaq.com Fondation Date de formation Juillet 2006 Pays d'origine Irak Actions Zone d'opération Irak, Syrie, Liban et Iran Organisation Chefs principaux Qais al-Khazali Akram al-Kaabi Membres 10...
هذه المقالة عن مصطلح المافيا عموما. لمعانٍ أخرى، طالع مافيا (توضيح). مافيا مناطق النشاط إيطاليا هولندا المكسيك الولايات المتحدة كولومبيا روسيا اليابان تعديل مصدري - تعديل المافيا هو مصطلح يستخدم لوصف نوع من «نقابة عصابات الجريمة المنظم...
Football match1973 European Cup Winners' Cup finalMatch programme coverEvent1972–73 European Cup Winners' Cup Milan Leeds United 1 0 Date16 May 1973VenueKaftanzoglio Stadium, ThessalonikiRefereeChristos Michas (Greece)Attendance40,154← 1972 1974 → The 1973 European Cup Winners' Cup Final was the final football match of the 1972–73 European Cup Winners' Cup and the 13th European Cup Winners' Cup final. It was contested between Milan of Italy and Leeds United of England, and wa...
County in West Virginia, United States County in West VirginiaGrant CountyCountyOld Grant County Courthouse in PetersburgSmoke Hole CavernsFairfax Stone Historical Monument State ParkRolling countryside in southern Grant County SealLogoLocation of Grant County in West VirginiaWest Virginia's location within the U.S.Coordinates: 39°04′N 79°07′W / 39.06°N 79.12°W / 39.06; -79.12Country United StatesState West VirginiaFoundedFebruary 6, 1866Named forUlys...
Design of geospatial data storage For broader coverage of this topic, see Data model. A geographic data model, geospatial data model, or simply data model in the context of geographic information systems, is a mathematical and digital structure for representing phenomena over the Earth. Generally, such data models represent various aspects of these phenomena by means of geographic data, including spatial locations, attributes, change over time, and identity. For example, the vector data model...
Ne pas confondre avec Famille de planètes mineures. Diagramme orbital classique croisant demi-grand axe et inclinaison. Mise en évidence de plusieurs groupes : centaures, ceinture de Kuiper (dont plutinos), disque des objets épars. Diagramme classique représentant la dispersion des objets autour du Soleil. Mise en évidence de plusieurs groupes : géocroiseurs, ceinture principale d'astéroïdes, groupe de Hilda, troyens de Jupiter. Un groupe de planètes mineures, groupe d'ast...
Questa voce o sezione sull'argomento pugili britannici non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Portrait of Jem Belcher, circa 1800 Jem Belcher (Bristol, 15 aprile 1781 – Londra, 30 luglio 1811) è stato un pugile inglese, campione d'Inghilterra dal 1800 al 1805. Nacque a Bristol, città che diede i natali a molti pugili del periodo. Nel 1798 di...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Matsumoto Domain – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this message) Matsumoto Domain松本藩under Tokugawa shogunate Japan1590–1871CapitalMatsumoto CastleArea • Coordinates36°39′13″N 138°18�...
German minority of Transylvania, Romania Ethnic group Transylvanian SaxonsSiebenbürger Sachsen (German) Siweberjer Såksen (Transylvanian Saxon)Sași transilvăneni (Romanian)[a]erdélyi szászok (Hungarian)Flag of the Transylvanian Saxons and the coat of arms of the Transylvanian Saxon University (Latin: Universitas Saxonum) during the Middle Ages in RomaniaTotal populationc. 11,400–c. 300,000[1][2][3]Regions with significant populationsRoman...
Logical formulation of graph properties In the mathematical fields of graph theory and finite model theory, the logic of graphs deals with formal specifications of graph properties using sentences of mathematical logic. There are several variations in the types of logical operation that can be used in these sentences. The first-order logic of graphs concerns sentences in which the variables and predicates concern individual vertices and edges of a graph, while monadic second-order graph logi...
Cet article est une ébauche concernant une unité ou formation militaire française. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir 254e régiment. 254e régiment d'artillerie Création avril 1917 Dissolution juin 1940 Pays France Branche Armée de terre Type Régiment d'artillerie Rôle Artillerie divisionnaire Guerres Première Guerre mondialeSeconde Guerre mondiale Dé...
Opera by Christoph Willibald Gluck For other uses, see Ifigenia in Aulide (disambiguation). Frontespizio Ifigenia in Aulide Iphigénie en Aulide (Iphigeneia in Aulis) is an opera in three acts by Christoph Willibald Gluck, the first work he wrote for the Paris stage. The libretto was written by François-Louis Gand Le Bland Du Roullet and was based on Jean Racine's tragedy Iphigénie, itself based on the play Iphigenia in Aulis by Euripides. It was premiered on 19 April 1774 by the Paris Opé...