1527 in the Philippines
|
Read other articles:
Hi-Tech Park高新园Shenzhen MetroLokasiDistrik Nanshan, Shenzhen, GuangdongChinaOperatorSZMC (Shenzhen Metro Group)JalurGalat Lua: expandTemplate: template "SZM lines" does not exist.Jumlah peron2 (1 peron pulau)Jumlah jalur2KonstruksiJenis strukturBawah tanahAkses difabelYaSejarahDibuka28 September 2009Nama sebelumnyaGaoxinyuanOperasi layanan Lua error in package.lua at line 80: module 'Module:Adjacent stations/SZM' not found. Sunting kotak info • L • BBantuan pengg...
Настольный теннис Матч в одиночном мужском разряде (чемпионат мира 2013 года) Категория игры с ракеткой и мячом Занимающихся в мире более 260 млн Спортсменов в команде 1—5 Инвентарь ракетка, мяч, стол, сетка Дисциплины Одиночный разряд, парный разряд, смешанный разряд, команд...
Louisiana's gun law Location of Louisiana in the United States Gun laws in Louisiana regulate the sale, possession, and use of firearms and ammunition in the state of Louisiana in the United States.[1][2] Summary table Subject/Law Long Guns Hand Guns Relevant Statutes Notes State permit required to purchase? No No Firearm registration? No No Assault weapon law? No No Magazine capacity restriction? No No Owner license required? No No Permit required for concealed carry? N/A Yes...
Koompassia Koompassia malaccensis Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae Divisi: Magnoliophyta Kelas: Magnoliopsida Subkelas: Rosidae Ordo: Fabales Famili: Fabaceae Subfamili: Dialioideae Genus: KoompassiaMaingay ex Benth. (1873) Spesies[1] Koompassia excelsa ((Becc.) Taub.) Koompassia grandiflora (Kosterm.) Koompassia malaccensis (Maingay) Sinonim[1] Abauria Becc. (1877) Koompassia adalah salah satu genus tumbuhan dalam keluarga Fabaceae. Genus ini mencakup t...
Berondong Jagung berondong mentah Jagung berondong sesudah dimasak Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Monocots (tanpa takson): Commelinids Ordo: Poales Famili: Poaceae Genus: Zea Spesies: Z. mays Subspesies: Z. m. everta Nama trinomial Zea mays everta Berondong jagung. Berondong atau bertih jagung (Inggris: popcorn) adalah jenis penganan dari bijian serealia yang dipanaskan hingga meletup (mengembang atau mekar). Berondong yang pal...
В состав Житомирской области Украины входят 12 городов. Русскоеназвание Украинскоеназвание Район Население,чел.[1] Основан Статусгорода Герб Координаты Андрушёвка Андрушівка Бердичевский 8 951 1683 1975 50°01′08″ с. ш. 29°01′09″ в. д.HGЯO Барановка Баранівка Новоград-...
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (février 2022). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? ...
MAF1 التراكيب المتوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 3NR5 المعرفات الأسماء المستعارة MAF1, homolog, negative regulator of RNA polymerase III معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 610210 MGI: MGI:1916127 HomoloGene: 49867 GeneCards: 84232 علم الوجود الجيني الوظيفة الجز...
Liqueur Glayva Glayva is a liqueur originally produced in 1947 in Leith, Edinburgh, Scotland by Ronald Morrison & Co Ltd and now by Whyte and Mackay Ltd.[1][2] Glayva is made from a blend of aged Scotch whiskies, a selected range of spices, Mediterranean tangerines, cinnamon, almonds and honey. It has a deep golden colour and a distinctive flavour. History Glayva was first produced and sold in 1947 by wine and whisky merchant Ronald Morrison.[3] Like Drambuie, its ...
Voce principale: Law & Order - Unità vittime speciali. Il cast principale durante la ventesima stagione: Peter Scanavino (Det. Dominick Sonny Carisi, Jr.) , Kelli Giddish (Det. Amanda Rollins), Mariska Hargitay (Ten. Olivia Benson), Ice-T (Sgt. Odafin Tutuola) e Philip Winchester (viceprocuratore Peter Stone) La ventesima stagione della serie televisiva Law & Order - Unità vittime speciali, composta da 24 episodi, è stata trasmessa in prima visione negli Stati Uniti da NBC dal 27 ...
Shea Whigham nel 2018 Franklin Shea Whigham Jr. (Tallahassee, 5 gennaio 1969) è un attore statunitense. Indice 1 Biografia 2 Filmografia 2.1 Attore 2.1.1 Cinema 2.1.2 Televisione 2.2 Doppiatore 3 Doppiatori italiani 4 Altri progetti 5 Collegamenti esterni Biografia Nato in Florida, è figlio di Beth Whigham e dell'ex quarterback della Florida State University Frank Whigham; ha inoltre un fratello, Jack. Amante dello sport, da ragazzo ha giocato sia a calcio che a tennis. Ha frequentato per q...
Sumire Satō(佐藤 すみれ)Sumire SatōInformasi latar belakangNama lainSuuchan (すーちゃんcode: ja is deprecated )Lahir20 November 1993 (umur 30)AsalPrefektur Saitama, JepangGenreJ-popTahun aktif2008-sekarangLabelKing RecordsArtis terkaitAKB48 SKE48 Sumire Satō (佐藤 すみれcode: ja is deprecated , Satō Sumire, lahir 20 November 1993 di Prefektur Saitama), adalah mantan anggota grup idola Jepang SKE48. Ia bergabung pada 20 Desember 2008 sebagai anggota pelatihan (kenkyuuse...
此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...
Anglo-Irish British Army officer John NicholsonBrigadier General John NicholsonBorn(1822-12-11)11 December 1822[1]Dublin, IrelandDied23 September 1857(1857-09-23) (aged 34)Delhi, Mughal EmpireBuriedNicholson Cemetery, New DelhiAllegianceEast India CompanyService/branchBengal ArmyYears of service1839–1857RankBrigadier GeneralUnitBengal Native InfantryBattles/warsFirst Anglo-Afghan WarFirst Anglo-Sikh WarSecond Anglo-Sikh War Battle of Chillianwala Battle of Gujrat Indian Mu...
Naval AcademyAkademi Angkatan LautMottoHree Dharma ShantiMotto in EnglishEmbarrassed of doing defects[1]TypeService academyEstablished10 October 1951; 72 years ago (10 October 1951)SuperintendentRADM Denih Hendrata DeanBGEN (M) Edy PrakosoLocationSurabaya, East Java, IndonesiaColorsBlue and WhiteAffiliationsIndonesian National Armed Forces Academy SystemMascotShark and SealWebsitewww.aal.ac.id The Naval Academy (Indonesian: Akademi Angkatan Laut or AAL) is a service ...
Jacques PrasNazionalità Francia Ciclismo SpecialitàStrada Termine carriera1954 CarrieraSquadre di club 1947-1948 Peugeot1949 Terrot1950 Alcyon-Dunlop Terrot1951-1952Individuale1953-1954 Rochet Modifica dati su Wikidata · Manuale Jacques Pras (Bréville, 12 giugno 1924 – Cognac, 19 luglio 1992[1]) è stato un ciclista su strada francese. Professionista tra il 1947 ed il 1954, vinse una tappa al Tour de France. Indice 1 Carriera 2 Palmarès...
دوري الدرجة الثانية القطري الجهة المنظمة الاتحاد القطري لكرة القدم تاريخ الإنشاء 1963 الرياضة كرة القدم البلد قطر عدد الفرق 8 مستوى الدوري 2 أحدث بطل المرخية (2016-17) الأكثر فوزا المرخية، السيلية، الاتحاد (4) يتأهل إلى دوري نجوم قطر الصعود دوري نجوم قطر مسابقات متعلقة كأس ...
This template does not require a rating on Wikipedia's content assessment scale.It is of interest to the following WikiProjects:Stub sorting This template is maintained by WikiProject Stub sorting, an attempt to bring some sort of order to Wikipedia. If you would like to participate, you can choose to improve/expand the articles containing this stub notice, or visit the project page, where you can join the project and see a list of open tasks.Stub sortingWikipedia:WikiProject Stub sortingTemp...
I. liga 1962-1963 Competizione I. liga Sport Calcio Edizione 56ª Organizzatore ČMFS Luogo Cecoslovacchia Partecipanti 14 Risultati Vincitore Dukla Praga(6º titolo) Retrocessioni Spartak LZ Plzeň Dynamo Praga Statistiche Miglior marcatore Karel Petros (19) Incontri disputati 182 Gol segnati 540 (2,97 per incontro) Cronologia della competizione 1961-1962 1963-1964 Manuale L'edizione 1962/63 del campionato cecoslovacco di calcio vide la vittoria finale del D...
Equation for fixed point of functional composition Not to be confused with Schrödinger's equation. Ernst Schröder (1841–1902) in 1870 formulated his eponymous equation. Schröder's equation,[1][2][3] named after Ernst Schröder, is a functional equation with one independent variable: given the function h, find the function Ψ such that ∀ x Ψ ( h ( x ) ) = s Ψ ( x ) . {\displaystyle \forall x\;\;\;\Psi {\big (}h(x){\big )}=s\Psi (x).} Schröder'...