كمون متجهي

في حساب المتجهات، الكمون الإتجاهي هو حقل متجهي ودورانه عبارة عن حقل متجهي.[1][2] وهذا مماثل للكمون القياسي (العددي)، وهو حقل قياسي وتدرجه عبارة عن حقل متجهي.

الصيغة الرياضية :

لحقل متجهي v، الكمون الإتجاهي هو حقل متجهي A بحيث أن :

النتيجة :

إذا كان الحقل المتجهي v يُعطي حقل متجهي A، وبمعرفة أن تباعد الدوران (Divergence of the curl) يساوي صفر :

وهذا يقتضي أن يكون v حقل متجهي لولبي(solenoidal vector field أي أن قيمة التباعد عند أي نقطة في المجال تساوي صفر.

النظرية:

ليكن v (متجه في فضاء ثلاثي الأبعاد) حقل متجهي لولبي قابل للإشتقاق مرتين بشكل متصل. افترض أن v(x) ينقص بسرعة كافية كلما ذهبت ||x|| للمالانهاية :

و A عبارة عن كمون إتجاهي لـ v :

تعميم لهذه النظرية هو تحليل هلمهولتز الذي ينص على أن أي حقل إتجاهي يمكن أن يتم تحليله كمجموع حقل متجهي لولبي وحقل متجهي لا دوراني.

عدم التفرد:

الكمون الإتجاهي لمتجه لولبي ليس وحيد. إذا كان A كمون إتجاهي لـ v ، إذن () هو كذلك كمون إتجاهي ، حيث f عبارة عن أي اقتران عددي متصل قابل للإشتقاق. وهذا يتبع لحقيقة أن قيمة دوران التباعد هي صفر.

مراجع

  1. ^ "معلومات عن الكمون الإتجاهي على موقع thes.bncf.firenze.sbn.it". thes.bncf.firenze.sbn.it. مؤرشف من الأصل في 2020-09-27.
  2. ^ "معلومات عن الكمون الإتجاهي على موقع d-nb.info". d-nb.info. مؤرشف من الأصل في 2022-05-04.