جيد بروفي

جيد بروفي
(بالإنجليزية: Jed Brophy)‏  تعديل قيمة خاصية (P1559) في ويكي بيانات
 
معلومات شخصية
الميلاد 29 أكتوبر 1963 (62 سنة)  تعديل قيمة خاصية (P569) في ويكي بيانات
ماناواتو - وانجانوي  تعديل قيمة خاصية (P19) في ويكي بيانات
مواطنة نيوزيلندا  تعديل قيمة خاصية (P27) في ويكي بيانات
الحياة العملية
المهنة ممثل، وممثل أفلام  تعديل قيمة خاصية (P106) في ويكي بيانات
اللغات الإنجليزية  تعديل قيمة خاصية (P1412) في ويكي بيانات
المواقع
IMDB صفحة متعلقة في موقع IMDB  تعديل قيمة خاصية (P345) في ويكي بيانات

جيد بروفي (بالإنجليزية: Jed Brophy)‏ هو ممثل نيوزلندي، ولد في 29 أكتوبر 1963 في نيوزيلندا.[1]

أعمال

أفلام

مراجع

  1. ^ Beaumont، Emily (17 ديسمبر 2013). "Actor's family rest and recharge in Taihape". مؤرشف من الأصل في 2019-04-14. اطلع عليه بتاريخ 2017-01-01.
  2. ^ King Kong (2005) – Svensk Filmdatabas نسخة محفوظة 19 سبتمبر 2016 على موقع واي باك مشين.
  3. ^ King Kong (2005) - Box Office Mojo نسخة محفوظة 12 أكتوبر 2018 على موقع واي باك مشين.
  4. ^ King Kong (2005) - Release Info - IMDb نسخة محفوظة 10 مارس 2017 على موقع واي باك مشين.
  5. ^ The Hobbit: An Unexpected Journey (2012) - Release Info - IMDb نسخة محفوظة 27 أكتوبر 2018 على موقع واي باك مشين.

وصلات خارجية

Read other articles:

Disambiguazione – Se stai cercando l'omonima classe di animali echinodermi, vedi Asteroidea. 243 Ida e la sua luna Dattilo, il primo satellite di un asteroide ad essere stato scoperto. Un asteroide è un piccolo corpo celeste simile per composizione ad un pianeta terrestre, generalmente privo di una forma sferica, di solito con un diametro inferiore al chilometro, anche se non mancano corpi di grandi dimensioni, giacché tecnicamente anche i corpi particolarmente massicci recentemente scop...

 

 

PathURLwww.path.comTipesitus web Registration (en)YaLangueInggris, Arab, Norwegia, Belanda, Prancis, Jerman, Yunani, Indonesia, Italia, Jepang, Korea, Mandarin Sederhana, Mandarin Tradisional, Melayu, Portugis, Rusia, Spanyol, Swedia, ThaiPemilikIndependen (2010-2015)KAKAO Inc.PembuatDave Morin dan Shawn Fanning (en) Service entry (en)November 2010Service retirement (en)September 2018 KeadaanDitutup Path adalah sebuah aplikasi jejaring sosial pada telepon pintar yang memungkinkan penggunanya ...

 

 

Bungkil inti sawit Bungkil inti sawit (BIS) merupakan salah satu hasil samping pengolahan inti sawit dengan kadar 45-46% dari inti sawit.[1] BIS umumnya mengandung air kurang dari 10% dan 60% fraksi nutrisinya berupa selulosa, lemak, protein, arabinoksilan, glukoronoxilan, dan mineral.[1] Bahan ini dapat diperoleh dengan proses kimia atau dengan cara mekanik.[2] Walaupun BIS proteinnya rendah, tetapi kualitasnya cukup baik dan serat kasarnya tinggi.[2] Namun BI...

Hafez IbrahimLahir(1872-02-24)24 Februari 1872 Dayrout, MesirMeninggal21 Juni 1932(1932-06-21) (umur 60) Kairo, MesirPekerjaanPenyairKebangsaan Mesir Hafez Ibrahim (24 Februari 1872 – 21 Juni 1932) adalah seorang penyair Mesir terkenal dari awal abad ke-20. Dia dijuluki Penyair Sungai Nil, dan kadang-kadang Penyair Rakyat, karena komitmen politiknya kepada orang miskin. Karya Beberapa buku Hafez Ibrahim antara lain: Albasūka al-dimāʾ fawq al-dimāʾ, ألبسوك الدماء فوق...

 

 

Maria Full of GracePoster rilis teatrikalSutradaraJoshua MarstonProduserPaul S. MezeyDitulis olehJoshua MarstonPemeranCatalina Sandino MorenoYenny Paola VegaJohn Álex ToroGuilied LopezPatricia RaePenata musikLeonardo HeiblumJacobo LiebermanSinematograferJim DenaultPenyuntingAnne McCabeLee PercyPerusahaanproduksiHBO FilmsJourneyman PicturesDistributorFine Line FeaturesTanggal rilis 18 Januari 2004 (2004-01-18) Durasi101 menitNegaraEkuadorColombiaAmerika SerikatBahasaSpanyolAnggaran...

 

 

Cet article est une ébauche concernant l’opéra ou l’opérette. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Les Brigands. I masnadieri Jenny Lind, créatrice du rôle d'Amelia. Eduard Magnus (1862) Données clés Genre Opéra Nbre d'actes 4 Musique Giuseppe Verdi Livret Andrea Maffei Langueoriginale Italien Sourceslittéraires Die Räuber Friedrich von Schiller Dates de...

Chemical compound Not to be confused with 17α-Dihydroequilin, 17β-Dihydroequilin, or 17α-Dihydroequilenin. 17β-DihydroequileninClinical dataOther namesβ-Dihydroequilenin; Δ6,8-17β-Estradiol; 6,8-Didehydro-17β-estradiol; Estra-1,3,5(10),6,8-pentaen-3,17β-diolRoutes ofadministrationBy mouthDrug classEstrogenIdentifiers IUPAC name (13S,14S,17S)-13-methyl-11,12,14,15,16,17-hexahydrocyclopenta[a]phenanthrene-3,17-diol CAS Number1423-97-8PubChem CID3032407ChemSpider2297390ChEMBLChEMBL12340...

 

 

Sayuran yang dijual di pasar.Sayur atau sayuran merupakan sebutan umum bagi bahan pangan nabati yang biasanya mengandung kadar air yang tinggi, yang dapat dikonsumsi setelah dimasak atau diolah dengan teknik tertentu, atau dalam keadaan segar.[1][2] Istilah untuk kumpulan berbagai jenis sayur adalah sayur-sayuran atau sayur-mayur. Pengolahan sayur-mayur dapat dilakukan dengan cara beragam. Sayur merupakan makanan yang sehat untuk dikonsumsi. Sayuran berperan penting bagi manus...

 

 

イスラームにおける結婚(イスラームにおけるけっこん)とは、二者の間で行われる法的な契約である。新郎新婦は自身の自由な意思で結婚に同意する。口頭または紙面での規則に従った拘束的な契約は、イスラームの結婚で不可欠だと考えられており、新郎と新婦の権利と責任の概要を示している[1]。イスラームにおける離婚は様々な形をとることができ、個�...

Gates Bar-B-Q at Cleaver II & Paseo on Brush Creek Gates Bar-B-Q is one of two Kansas City, Missouri restaurants (along with Arthur Bryant's) that trace their roots back to Henry Perry, founder of Kansas City barbecue.[1] Founded Gates Bar-B-Q is a Kansas City original family restaurant that started in 1946. It has grown from a single storefront at 19th and Vine to a family of six up-to-date restaurants throughout the Kansas City metropolitan area. This neighborhood saw the rise o...

 

 

American baseball player and manager (1927–2021) For the Chrysler executive, see Thomas W. LaSorda. Baseball player Tommy LasordaLasorda at the White House in 1981Pitcher / ManagerBorn: (1927-09-22)September 22, 1927Norristown, Pennsylvania, U.S.Died: January 7, 2021(2021-01-07) (aged 93)Fullerton, California, U.S.Batted: LeftThrew: LeftMLB debutAugust 5, 1954, for the Brooklyn DodgersLast MLB appearanceJuly 8, 1956, for the Kansas City AthleticsMLB statis...

 

 

1940 territorial settlement between the kingdoms of Romania and Hungary This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2017) (Learn how and when to remove this message) This article's lead section ma...

село Нова Збур'ївка Емблема селаЕмблема села Країна  Україна Область Херсонська область Район Скадовський район Громада Голопристанська міська громада Код КАТОТТГ UA65080030110069069 Основні дані Засноване 1774 Населення 7489 Площа 4,96 км² Густота населення 1509,88 осіб/км² По...

 

 

Part of the LGBT rights seriesLegal status ofsame-sex unions Marriage Andorra Argentina Australia Austria Belgium Brazil Canada Chile Colombia Costa Rica Cuba Denmark Ecuador Estonia Finland France Germany Greece Iceland Ireland Liechtenstein* Luxembourg Malta Mexico Nepal Netherlands1 New Zealand2 Norway Portugal Slovenia South Africa Spain Sweden Switzerland Taiwan United Kingdom3 United States4 Uruguay Recognized Israel5 Civil unions andregistered partnerships Bolivia Croatia Cyprus Czech...

 

 

Events of the 2000s related to jazz music This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by adding missing items with reliable sources. Jazz by decade 1920s1930s1940s1950s1960s 1970s1980s1990s2000s2010s vte John Zorn performing in 2006. In the 2000s in jazz, there was a gradual decline in popularity for the smooth jazz subgenre which had flourished in the previous decade[1] In the 2000s, a number of young musicians emerged, ...

Parameter which a physical system must obey In this system the box slides down a slope, the constraint is that the box must remain on the slope (it cannot go through it or start flying). In classical mechanics, a constraint on a system is a parameter that the system must obey. For example, a box sliding down a slope must remain on the slope. There are two different types of constraints: holonomic and non-holonomic.[1] Types of constraint First class constraints and second class constr...

 

 

Ne pas confondre avec le village situé dans l’Illinois, Bishop Hill. Cet article est une ébauche concernant une localité du Texas. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Bishop HillsGéographiePays  États-UnisÉtat TexasComté comté de PotterSuperficie 0,81 km2 (2010)Surface en eau 0 %Altitude 1 063 m, 1 063 mCoordonnées 35° 15′ 34″ N, 101° 57′...

 

 

Josef Stanglvescovo della Chiesa cattolicaMons. Josef Stangl durante una processione il 1º maggio 1959 Domino plebem perfectam  Incarichi ricopertiVescovo di Würzburg (1957-1979)  Nato12 agosto 1907 a Kronach Ordinato presbitero16 marzo 1930 Nominato vescovo27 giugno 1957 da papa Pio XII Consacrato vescovo12 settembre 1957 dall'arcivescovo Josef Schneider Deceduto8 aprile 1979 (71 anni) a Schweinfurt   Manuale Josef Stangl (Kronach, 12 agosto 1907 – Schweinfurt, 8 apri...

District in Penang, Malaysia District of Malaysia in PenangNorth Seberang Perai District District of MalaysiaDaerah Seberang Perai UtaraOther transcription(s) • MalayDaerah Seberang Perai Utara (Rumi)دايره سبرڠ ڤراي اوتارا‎ (Jawi) • Chinese威北县 (Simplified)威北縣 (Traditional) • Tamilவட செபாராங் பிறை மாவட்டம்Vaṭa Ceparāṅ Piṟai Māvaṭṭam (Transliteration)Aerial view ...

 

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Category of matrices – news · newspapers · books · scholar · JSTOR (June 2024) Basic definition and properties of the category of matrices In mathematics, the category of matrices, often denoted M a t {\displaystyle \mathbf {Mat} } , is the category w...