كما أنه يفسر لا هرمونية/ توافقية الروابط الحقيقية واحتمال الانتقال غير الصفري للتوافقيات الأعلى وللحزم المركبة .
يمكن أيضا استخدام جهد مورس لنمذجة تفاعلات أخرى مثل التفاعل بين ذرة وسطح. ونظراً لبساطته (ثلاثة متغيرات ملائمة /توفيق فقط)، لا يستخدم في التحليل الطيفي الحديث.
يعتبر أيضا دالة الطاقة الكامنة الأكثر شيوعاً في الاستخدام لتحليل البيانات الطيفية.
دالة الطاقة الكامنة
دالة مورس للطاقة الكامنة هي كالتالي
هنا هي المسافة بين الذرات، هي طول رابطة التوازن، هو عمق بئرالجهد (معرّف بالنسبة للذرات المنفصلة) يتحكم في «عرض» الجهد. يمكن حساب طاقة التفكك للروابط بطرح طاقة نقطة الصفر . يمكن ايجاد ثابت القوة (الصلابة) للرابطة عن طريق مفكوك تايلور حول إلى المشتق الثاني لدالة الطاقة الكامنة، والتي يمكن من خلالها إثبات أن المعلمة، ، تكون
أي ان هو ثابت القوة عند الحد الأدنى.
نظرًا لأن صفرية الطاقة الكامنة هو أمر إختياري، يمكن إعادة كتابة معادلة جهد مورس بأي عدد من الطرق عن طريق إضافة أو طرح قيمة ثابتة. عندما تستخدم(دالة جهد مورس) لنمذجة التفاعل بين السطح والذرة، يمكن إعادة تعريف مستوى الطاقة الصفرية بحيث يصبح جهد مورس
الذي يكتب عادة هكذا
حيث أن هو الآن الإحداثي العمودي على السطح. يقترب هذا النموذج من الصفرعند قيم اللانهائية ويساوي في الحد الأدنى، أي عندما . يُظهر بوضوح أن جهد مورس هي مزيج من حد/مقدار نفور قصير المدى (الأول) وحد/مقدار جذب طويل المدى (الأخير)، يماثل جهد لينارد جونز.
يوجد أيضًا التعبير التحليلي الهام التالي لعناصر المصفوفة لعامل الإحداثيات (هنا يُفترض و ) [3]
الطاقة الذاتية في المتغيرات الأولية بهذا الشكل:
أي ان هو عدد الذبذبات الكمية، و لديها وحدات من التردد، وهي مرتبطة رياضيا بكتلة الجسيمات، ، وثوابت مورس عبر
في حين أن تباعد الطاقة بين مستويات الاهتزاز في المذبذب التوافقي الكمومي ثابت عند ، الطاقة بين المستويات المجاورة تنخفض مع زيادة في مذبذب مورس. رياضيا، تباعد مستويات مورس
يطابق هذا الاتجاه عدم التناسق الموجود في الجزيئات الحقيقية. ومع ذلك، فشلت هذه المعادلة فوق بعض القيم مثل أي تُحْسَب على أنها صفر أو سلبية. على وجه التحديد:
جزء صحيح.
يرجع هذا الفشل إلى العدد المحدود من المستويات المقيدة في جهد مورس، وبعض الحدود القصوى من التي لا تزال مقيدة. للطاقات التي اعلى من ، يُسمح بجميع مستويات الطاقة الممكنة، لأن المعادلة لم تعد صالحة.
أدناه ، هو تقريب جيد للبنية الاهتزازية الحقيقية في الجزيئات ثنائية الذرة غير الدورية. في الواقع، تتناسب الأطياف الجزيئية الحقيقية بشكل عام مع الشكل 1
الثوابت و يمكن أن تكون مرتبطة مباشرة بالمعلمات لجهد مورس.
كما هو واضح من التحليل البعدي، تستخدم المعادلة الأخيرة تدوينًا طيفيًا لأسباب تاريخية حيث يمثل انخفاض الموجة وليس تردد زاوي بواسطة .
جهد مورس / بعيدة المدى
امتداد مهم لجهد مورس التي جعلت شكل مورس مفيدًا جدًا في التحليل الطيفي الحديث هو جهد مورس/بعيد المدى (جهد ملر). يُسْتَخْدَم جهد ملر كمعيار لتمثيل البيانات الطيفية و / أو للجزيئات ثنائية الذرة بواسطة منحنى طاقة الوضع. تم استخدامه على N 2 ، [4] Ca 2 ، [5] KLi، [6] MgH، [7] العديد من الحالات الإلكترونية لـ Li 2 ، [8][9][10][11][12] Cs 2 ، [13][14] Sr 2 ، [15] ArXe، [16] LiCa، [17] LiNa، [18] Br 2 ، [19] Mg 2 ، [20] HF، [21][22] HCl، HBr، HI، MgD، [23] Be 2 ، [24] BeH، [25] و NaH.[26] تُستخدم نماذج أكثر تعقيداً للجزيئات متعددة الذرات.
Shore، Bruce W. (1973). "Comparison of matrix methods applied to the radial Schrödinger eigenvalue equation: The Morse potential". J. Chem. Phys. ج. 59 رقم 12. ص. 6450. Bibcode:1973JChPh..59.6450S. DOI:10.1063/1.1680025.
Lincoln، R. C.؛ Kilowad، K. M.؛ Ghate، P. B. (1967). "Morse-potential evaluation of second- and third-order elastic constants of some cubic metals". Phys. Rev. ج. 157 رقم 3. ص. 463–466. Bibcode:1967PhRv..157..463L. DOI:10.1103/PhysRev.157.463.
Dong، Shi-Hai؛ Lemus، R.؛ Frank، A. (2001). "Ladder operators for the Morse potential". Int. J. Quantum Chem. ج. 86 رقم 5. ص. 433–439. DOI:10.1002/qua.10038.
Zhou، Yaoqi؛ Karplus، Martin؛ Ball، Keith D.؛ Bery، R. Stephen (2002). "The distance fluctuation criterion for melting: Comparison of square-well and Morse Potential models for clusters and homopolymers". J. Chem. Phys. ج. 116 رقم 5. ص. 2323–2329. DOI:10.1063/1.1426419.
IG Kaplan ، في كتيب الفيزياء الجزيئية وكيمياء الكم، وايلي، 2003، ص 207.
^F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics, World Scientific, 2001, Table 4.1
^E. F. Lima and J. E. M. Hornos, "Matrix Elements for the Morse Potential Under an External Field", J. Phys. B: At. Mol. Opt. Phys. 38, pp. 815-825 (2005)
^Shayesteh، A.؛ R. D. E. Henderson؛ R. J. Le Roy؛ P. F. Bernath (2007). "Ground State Potential Energy Curve and Dissociation Energy of MgH". The Journal of Physical Chemistry A. ج. 111 ع. 49: 12495–12505. Bibcode:2007JPCA..11112495S. DOI:10.1021/jp075704a. PMID:18020428.
^Le Roy، Robert J.؛ N. S. Dattani؛ J. A. Coxon؛ A. J. Ross؛ Patrick Crozet؛ C. Linton (25 نوفمبر 2009). "Accurate analytic potentials for Li2(X) and Li2(A) from 2 to 90 Angstroms, and the radiative lifetime of Li(2p)". Journal of Chemical Physics. ج. 131 ع. 20: 204309. Bibcode:2009JChPh.131t4309L. DOI:10.1063/1.3264688. PMID:19947682.
^Dattani، N. S.؛ R. J. Le Roy (8 مايو 2013). "A DPF data analysis yields accurate analytic potentials for Li2(a) and Li2(c) that incorporate 3-state mixing near the c-state asymptote". Journal of Molecular Spectroscopy. ج. 268 ع. 1–2: 199–210. arXiv:1101.1361. Bibcode:2011JMoSp.268..199.. DOI:10.1016/j.jms.2011.03.030.
^Xie، F.؛ L. Li؛ D. Li؛ V. B. Sovkov؛ K. V. Minaev؛ V. S. Ivanov؛ A. M. Lyyra؛ S. Magnier (2011). "Joint analysis of the Cs2 a-state and 1 g (33Π1g ) states". Journal of Chemical Physics. ج. 135 ع. 2: 02403. Bibcode:2011JChPh.135b4303X. DOI:10.1063/1.3606397. PMID:21766938.
^Coxon، J. A.؛ P. G. Hajigeorgiou (2010). "The ground X 1Σ+g electronic state of the cesium dimer: Application of a direct potential fitting procedure". Journal of Chemical Physics. ج. 132 ع. 9: 094105. Bibcode:2010JChPh.132i4105C. DOI:10.1063/1.3319739. PMID:20210387.
^Piticco، Lorena؛ F. Merkt؛ A. A. Cholewinski؛ F. R. W. McCourt؛ R. J. Le Roy (ديسمبر 2010). "Rovibrational structure and potential energy function of the ground electronic state of ArXe". Journal of Molecular Spectroscopy. ج. 264 ع. 2: 83–93. Bibcode:2010JMoSp.264...83P. DOI:10.1016/j.jms.2010.08.007.
^Ivanova، Milena؛ A. Stein؛ A. Pashov؛ A. V. Stolyarov؛ H. Knockel؛ E. Tiemann (2011). "The X2Σ+ state of LiCa studied by Fourier-transform spectroscopy". Journal of Chemical Physics. ج. 135 ع. 17: 174303. Bibcode:2011JChPh.135q4303I. DOI:10.1063/1.3652755. PMID:22070298.
^Yukiya، T.؛ N. Nishimiya؛ Y. Samejima؛ K. Yamaguchi؛ M. Suzuki؛ C. D. Boonec؛ I. Ozier؛ R. J. Le Roy (يناير 2013). "Direct-potential-fit analysis for the system of Br2". Journal of Molecular Spectroscopy. ج. 283: 32–43. Bibcode:2013JMoSp.283...32Y. DOI:10.1016/j.jms.2012.12.006.
^Li، Gang؛ I. E. Gordon؛ P. G. Hajigeorgiou؛ J. A. Coxon؛ L. S. Rothman (يوليو 2013). "Reference spectroscopic data for hydrogen halides, Part II:The line lists". Journal of Quantitative Spectroscopy & Radiative Transfer. ج. 130: 284–295. Bibcode:2013JQSRT.130..284L. DOI:10.1016/j.jqsrt.2013.07.019.
^Coxon، John A.؛ Hajigeorgiou، Photos G. (2015). "Improved direct potential fit analyses for the ground electronic states of the hydrogen halides: HF/DF/TF, HCl/DCl/TCl, HBr/DBr/TBr and HI/DI/TI". Journal of Quantitative Spectroscopy and Radiative Transfer. ج. 151: 133–154. Bibcode:2015JQSRT.151..133C. DOI:10.1016/j.jqsrt.2014.08.028.
^Meshkov، Vladimir V.؛ Stolyarov، Andrey V.؛ Heaven، Michael C.؛ Haugen، Carl؛ Leroy، Robert J. (2014). "Direct-potential-fit analyses yield improved empirical potentials for the ground XΣg+1 state of Be2". The Journal of Chemical Physics. ج. 140 ع. 6: 064315. DOI:10.1063/1.4864355. PMID:24527923.