نشر عالم الرياضيات الفرنسي ألبرت جيرارد كتابا في هذا المجال عام 1629، عنوانه الاختراع الجديد في الجبر. زعم ألبرت جيرارد في هذا الكتاب أن متعددة حدود من الدرجة n عدد أصفارها يساوي حتما n.
يستنتج من المبرهنة الأساسية في الجبر أن كل حدودية ذات معاملات حقيقية يمكن أن تكتب جداءا لحدوديات بمعاملات حقيقية ذات الدرجة الأولى أو الدرجة الثانية.
في عام 1702، زعم لايبنتس أن حدودية على شكل x4 + a4 حيث a عدد حقيقي مختلف عن الصفر، لا يمكن أن تكتب على هذا الشكل. فيما بعد، زعم نيكولاس بيرنولي الأول نفس الشيء بالنسبة إلى الحدودية x4 − 4x3 + 2x2 + 4x + 4. ولكنه تلقى رسالة من أويلر عام 1742، مبينة أن حدودية بيرنولي تساوي ما يلي
حيث .
كتب أويلر أيضا في رسالته ما يلي
لاغيا بذلك قول لايبنتس.
لتبسيط صيغة حلول المعادلات من الدرجة الثالثة أو الرابعة، اخترعت الأعداد المركبة. وتبين هذه المبرهنة أن هذه الأعداد كافية لوصف حلول باقي المعادلات الجبرية.