القمة العربية 2019 (تونس)
|
Read other articles:
BangkoKecamatanJam GentoNegara IndonesiaProvinsiJambiKabupatenMeranginPemerintahan • CamatHj Fauziah S.EPopulasi • Total45,557 jiwaKode Kemendagri15.02.02 Kode BPS1502040 Luas168,39 km²Desa/kelurahan4/4 Jembatan Batang Merangin (atau sekarang jembatan Mayor H. Syamsuddin Uban) sekitar tahun 1930-an Ujung Tanjung Muara Masumai (1920) Rumah Asisten Residen di Bangko (1907) Bangko adalah sebuah kecamatan yang juga merupakan ibu kota Kabupaten Merangin, Jambi, Indone...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Sendangrejo, Dander, Bojonegoro – berita · surat kabar · buku · cendekiawan · JSTOR SendangrejoDesaNegara IndonesiaProvinsiJawa TimurKabupatenBojonegoroKecamatanDanderKode pos62171Kode Kemendagri35....
Benoît-Constant Coquelin (Boulogne-sur-Mer, 23 gennaio 1841 – Couilly-Pont-aux-Dames, 27 gennaio 1909) è stato un attore francese. Divenne celebre per essere stato il primo interprete in assoluto, nel 1897, del Cyrano de Bergerac di Edmond Rostand. Benoît-Constant Coquelin Coquelin nel ruolo di Cirano Ritratto di Jean Béraud Cyrano de Bergerac (1900) Indice 1 Biografia 2 Riconoscimenti 3 Interpretazioni 3.1 Alla Comédie-Française 3.2 In altri teatri 4 Cinema 5 Note 6 Bibliografia 7 Al...
Questa voce o sezione sull'argomento centri abitati della Spagna non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Cabrillanescomune Cabrillanes – Veduta LocalizzazioneStato Spagna Comunità autonoma Castiglia e León Provincia León TerritorioCoordinate42°57′00″N 6°07′59.88″W...
Group of sports Floor hockey game being played outdoors on asphalt Floor hockey is a broad term for several indoor floor game codes which involve two teams using a stick and type of ball or disk. Disks are either open or closed but both designs are usually referred to as pucks. These games are played either on foot or with wheeled skates. Variants typically reflect the style of ice hockey, field hockey, bandy or some other combination of sport. Games are commonly known by various names includ...
Qing dynasty military commander (1809–1885) In this Chinese name, the family name is Zeng. Zeng FengnianNative name曾逢年Born1809Jieshi, Lufeng, GuangdongDied1885Jieshi, Lufeng, GuangdongAllegiance Qing dynastyYears of service1820s-1863Battles/warsNian Rebellion Zeng Fengnian (Chinese: 曾逢年; 1809-1885) was a late Qing military figure from Jieshi, Lufeng, Guangdong.[1] In 1845 he was appointed commander of the Nan'ao Subdistrict[2] and in 1863 was given the p...
Во поле берёза стояла Народная песня Язык русский Первое упоминание 1790 Авторы первой записи И. Прач, Н. Львов Дата выхода XVIII век Жанр хороводная Текст в Викитеке А. И. Куинджи, «Берёзовая роща» (1879) «Во́ поле берёза стоя́ла» («Во поле берёзка стояла», «Во поле бер�...
FormicolaKomuneComune di FormicolaLokasi Formicola di Provinsi CasertaNegaraItaliaWilayah CampaniaProvinsiCaserta (CE)Luas[1] • Total15,68 km2 (6,05 sq mi)Ketinggian[2]192 m (630 ft)Populasi (2016)[3] • Total1.504 • Kepadatan96/km2 (250/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos81040Kode area telepon0823Situs webhttp://www.comune.formicola.ce.it Formicola adalah ...
Brussels Indoor 1981 Sport Tennis Data 9 marzo - 15 marzo Edizione 2a Superficie Sintetico indoor Campioni Singolare Jimmy Connors Doppio Sandy Mayer / Frew McMillan 1982 Il Brussels Indoor 1981 è stato un torneo di tennis giocato sintetico indoor. È stata la 2ª edizione del Brussels Indoor, che fa parte del Volvo Grand Prix 1981. Si è giocato a Bruxelles in Belgio dal 9 al 15 marzo 1981. Indice 1 Campioni 1.1 Singolare maschile 1.2 Doppio maschile 2 Collegamenti esterni Campioni Singola...
GravitonGraviton interpretato da Ian Hart nella serie televisiva Agents of S.H.I.E.L.D. UniversoUniverso Marvel Lingua orig.Inglese AutoriJim Shooter Sal Buscema EditoreMarvel Comics 1ª app.aprile 1977 1ª app. inAvengers (Vol.1[1]) n. 158 Editore it.Editoriale Corno 1ª app. it.30 aprile 1979 1ª app. it. inIl mitico Thor n.210 Interpretato daIan Hart Voce italianaRoberto Chevalier Caratteristiche immaginarieAlter egoFranklin Hall SoprannomeSignore delle Forze ...
Данио-рерио Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые рыбыИн�...
Company producing animated content Walt Disney Animation Studios An animation studio is a company producing animated media. The broadest such companies conceive of products to produce, own the physical equipment for production, employ operators for that equipment, and hold a major stake in the sales or rentals of the media produced. They also own rights over merchandising and creative rights for characters created/held by the company, much like authors holding copyrights. In some early cases,...
Goldman Sachs FoundationFormation1999TypeNot-for-profit private foundationHeadquartersNew York, NY, United StatesChairman and CEOJohn F. W. RogersKey peopleAsahi Pompey, President The Goldman Sachs Foundation is a New York–based, not-for-profit private foundation that is a subsidiary of the financial services firm Goldman Sachs and has the goal of bettering humanity worldwide, especially regarding health and education. In recent years its principal philanthropic projects have been: 10,000 W...
Cosmetic for coloring the lip For other uses, see Lipstick (disambiguation). The examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (December 2022) (Learn how and when to remove this message) It has been suggested that Lip stain be merged into this article. (Discuss) Proposed since February 2024. A woman applying red lipstick Lips with dark crimso...
Scottish semiconductor device design company FTDICompany typePrivateIndustrySemiconductor industryFounded13 March 1992FounderFred DartHeadquartersGlasgow, ScotlandWebsitewww.ftdichip.com Future Technology Devices International Limited, commonly known by its acronym FTDI, is a Scottish privately held semiconductor device company, specialising in Universal Serial Bus (USB) technology.[1] It develops, manufactures, and supports devices and their related cables and software drivers for co...
This is a list of Danish Nobel laureates. Since the Nobel Prize was established per the will of Swedish inventor Alfred Nobel in 1895, 14 of the prize winners have been from Denmark. The first Danish Nobel laureate was Niels Ryberg Finsen, who won a Nobel Prize for medicine in 1903 for his work on using light therapy to treat diseases. The most recent Danish Nobel Prize winner was Morten Meldal who won the prize in chemistry in 2022 for the development of click chemistry and bioorthogonal ch...
Rugby teamVfR DöhrenFull nameVerein für Rasenspiele 1906 e.VUnionGerman Rugby FederationFounded1906LocationHanover, GermanyCoach(es)Jens HimmerLeague(s)2. Rugby-Bundesliga (II)2015–162. Rugby-Bundesliga North, 4thOfficial websitewww.vfr06.de The VfR Döhren is a German rugby union club from Hanover, playing in the Regionalliga North, the third tier of rugby in Germany. It plays in partnership with SV Odin Hannover, as SG SV Odin/VfR Döhren. The club has three German rugby union champion...
謝龍介 中華民國第11屆立法委員现任就任日期2024年2月1日 选区全國不分區及僑居國外國民立法委員選舉區 臺南市議會第1-3屆議員任期2014年12月25日—2022年12月24日 选区第十一選舉區(北區) → 第八選舉區(北區、中西區) 任期2010年12月25日—2014年5月22日辭職 选区第十一選舉區(北區) 中國國民黨第20屆副祕書長任期2020年3月18日—2021年10月5日与李彥秀、柯志恩、...
تحتاج هذه المقالة كاملةً أو أجزاءً منها إلى تدقيق لغوي أو نحوي. فضلًا ساهم في تحسينها من خلال الصيانة اللغوية والنحوية المناسبة. (أغسطس 2015) المسيحية الإسلام البوذية دين الدولة أو الديانة الرسمية هي العقيدة الدينية التي تتبناها الدولة بشكل رسمي في دستوره...
Formula for number of orbits of a group action Burnside's lemma, sometimes also called Burnside's counting theorem, the Cauchy–Frobenius lemma, or the orbit-counting theorem, is a result in group theory that is often useful in taking account of symmetry when counting mathematical objects. It was discovered by Augustin Louis Cauchy and Ferdinand Georg Frobenius, and became well-known after William Burnside quoted it.[1] The result enumerates orbits of a symmetry group acting on some ...