تعتمد أنظمة التعبير الأقدم والأكثر استخدامًا على الخلايا ويمكن تعريفها على أنها «مزيج من ناقل العبارة، وحمضه النووي المستنسخ، والمضيف للناقل الذي يوفر سياقًا للسماح بوظيفة الجين الأجنبي في خلية مضيفة، والذي هو إنتاج بروتينات على مستوى عالٍ».[10][11] الإفراط في التعبير هو مصطلح يشير إلى مستوى مرتفع بشكل غير طبيعي ومفرط من التعبير الجيني الذي ينتج عنه نمط ظاهري مرتبط بالجين.[12][13]
نظرًا لأن البكتيريا بدائيات النوى، فهي غير مجهزة بالآلية الأنزيمية الكاملة لتحقيق التعديلات المطلوبة بعد الترجمة أو الطي الجزيئي. ومن ثم، فإن البروتينات حقيقية النواة متعددة المجالات التي يُعبّر عنها في البكتيريا غالبًا ما تكون غير وظيفية. أيضًا، تصبح العديد من البروتينات غير قابلة للذوبان كأجسام متضمنة يصعب استردادها دون عوامل تغيير طبيعة قاسية وما تلاه من إعادة طيّ البروتين المستهلك.
لمعالجة هذه المخاوف، طوِّرت أنظمة التعبيرات باستخدام العديد من الخلايا حقيقية النواة للتطبيقات التي تتطلب تطابق البروتينات كما هو الحال في الكائنات حقيقية النواة أو أقرب إليها: تُنقل خلايا النباتات (مثل التبغ) أو الحشرات أو الثدييات (مثل الأبقار) مع الجينات ومزروعة في المعلق وحتى الأنسجة أو الكائنات الحية الكاملة، لإنتاج بروتينات مطوية بالكامل. ومع ذلك، فإن أنظمة التعبير عن الثدييات في الجسم الحي لها عائد منخفض وقيود أخرى (تستغرق وقتًا طويلاً، وسمية للخلايا المضيفة، …). للجمع بين الغلة/الإنتاجية العالية وميزات البروتين القابلة للتطوير للبكتيريا والخميرة، والميزات اللاجينية المتقدمة للنباتات والحشرات وأنظمة الثدييات، طوّرت أنظمة إنتاج البروتين الأخرى باستخدام حقيقيات النوى أحادية الخلية (أي خلايا «ليشمانيا» غير المسببة للأمراض).
الأنظمة البكتيرية
الإشريكية القولونية
تعتبر الإشريكية القولونية (E. coli) واحدة من أكثر مضيفات التعبير استخدامًا، وعادةً ما يُدخَل الحمض النووي في ناقل التعبير البلازميدي. طوِّرت تقنيات الإفراط في التعبير في الإشريكية القولونية بشكل جيد وتعمل عن طريق زيادة عدد نسخ الجين أو زيادة قوة الارتباط لمنطقة المحفز، مما يساعد على النسخ.
على سبيل المثال، يمكن استنساخ تسلسل حمض نووي ريبوزي منقوص الأكسجين لبروتين ذي أهمية أو استنساخه جزئيًا في بلازميد ذي رقم نسخ مرتفع يحتوي على محفز lac (غالبًا LacUV5)، والذي يُحوَّل بعد ذلك إلى بكتيريا E. coli. تعمل إضافة تناظرية اللاكتوز على تنشيط محفز اللاكتوز (lac) ويسبب البكتيريا للتعبير عن البروتين الفائدة.
سلالة الإشريكية القولونية BL21 وBL21 (DE3) سلالتان تستخدمان بشكل شائع لإنتاج البروتين. كأعضاء في سلالة B، فإنهم يفتقرون إلى البروتياز Lon وOmpT، مما يحمي البروتينات المنتجة من التدهور. يوفر طليعة العاثية الموجود في BL21 (DE3) بوليميريز تي 7 بوليميراز الحمض النووي الرايبوزي (مدفوعًا بمحفز LacUV5)، مما يسمح باستخدام نواقل مع محفز T7 بدلاً من ذلك.[14]
الوتدية
تستخدم الأنواع غير المسببة للأمراض من الوتديات موجبة الجرام للإنتاج التجاري للأحماض الأمينية المختلفة. تُستخدم أنواع الوتدية الجلوتاميك على نطاق واسع لإنتاج الغلوتاماتوالليسين،[15] ومكونات أغذية الإنسان وعلف الحيوانات والمنتجات الصيدلانية.
عُبِرَ عن عامل نمو البشرة البشري النشط وظيفيًا في وتدية الجلوتاميك،[16] مما يدل على إمكانية الإنتاج على نطاق صناعي للبروتينات البشرية. يمكن استهداف البروتينات المعبر عنها للإفراز إما من خلال المسار الإفرازي العام (Sec) أو مسار الانتقال التوأم أرجينين (Tat).[17]
تُستخدم البكتيريا غير الممرضة وسالبة الجرام، زائفة متألقة، لإنتاج البروتينات المؤتلفة عالية المستوى؛ عادة لتطوير المداواة الحيوية واللقاحات. الزائفة المتألقة هو كائن حي متعدد الاستخدامات من الناحية الأيضية، مما يسمح بفحص الإنتاجية العالية والتطور السريع للبروتينات المعقدة. تشتهر الزائفة المتألقة بقدرتها على إنتاج عيارات عالية من البروتين النشط والقابل للذوبان بشكل سريع وناجح.[18]
أنظمة حقيقية النواة
الخميرة
تسمح أنظمة التعبير التي تستخدم إما سكيراء جعوية أو Pichia pastoris بإنتاج مستقر ودائم للبروتينات التي تُعالج بشكل مشابه لخلايا الثدييات، بإنتاجية عالية، في وسائط محددة كيميائيًا من البروتينات.
الفطريات الخيطية
لقد طُورت الفطريات الخيطية، خاصة الرشاشيات والتريكوديرما، ولكن مؤخرًا طورت Myceliophthora thermophila C1[8] إلى منصات تعبير لفحص وإنتاج الإنزيمات الصناعية المتنوعة. يُظهر نظام التعبير C1 مورفولوجيا منخفضة اللزوجة في الثقافة المغمورة، مما يتيح استخدام وسائط النمو والإنتاج المعقدة.
الخلايا المصابة بفيروس باكولوفيروس
تسمح الخلايا الحشرية المصابة بفيروس باكولوفيروس[19] (Sf9 ، Sf21 ، خمسة سلالات عالية) أو خلايا الثدييات[20] (خلايا هيلا، وخلايا HEK 293) بإنتاج بروتينات غشائية أو غليكوزيلات لا يمكن إنتاجها باستخدام أنظمة فطرية أو بكتيرية.[19] يفيد في إنتاج البروتينات بكميات عالية. لا ييُعبّر عن الجينات بشكل مستمر لأن الخلايا المضيفة المصابة تتلاشى في النهاية وتموت خلال كل دورة عدوى.[21]
تعبير خلية حشرية غير ليتي
يُعد التعبير عن خلية الحشرات غير اللايتية بديلاً لنظام التعبير عن فيروس باكولوفيروس. في التعبير غير الليتي، تنقل النواقل بشكل عابر أو ثابت إلى الحمض النووي الصبغي لخلايا الحشرات من أجل التعبير الجيني اللاحق.[22][23] ويتبع ذلك اختيار وفحص الحيوانات المستنسخة المؤتلفة.[24] استُخدِام النظام غير اللاحلالي لإعطاء إنتاجية أعلى للبروتين وتعبير أسرع عن الجينات المؤتلفة مقارنة بالتعبير الخلوي المصاب بالفيروس البكتيري.[23] خطوط الخلايا المستخدمة لهذا النظام تشمل: Sf9 ،Sf21 من خلايا دودة الحشد الخريفية، Hi-5 من خلايا وبير الملفوف، وخلايا Schneider 2 وخلايا Schneider 3 من خلايا ذبابة فاكهة شائعة.[22][24] مع هذا النظام، لا تتلاشى الخلايا ويمكن استخدام العديد من طرق الزراعة.[22] بالإضافة إلى ذلك، عمليات إنتاج البروتين قابلة للتكاثر.[22][23] يعطي هذا النظام منتجًا متجانسًا.[23] عيب هذا النظام هو الحاجة إلى خطوة فرز إضافية لاختيار الحيوانات المستنسخة القابلة للحياة.[24]
طلائعيات كهفية
تسمح أنظمة تعبير ليشمانيا (لا يمكن أن تصيب الثدييات) بإنتاج مستقر ودائم للبروتينات بإنتاجية عالية، في وسائط محددة كيميائيًا. تُظهر البروتينات المُنتجة تعديلات ما بعد الترجمة حقيقية النواة بالكامل، بما في ذلك الارتباط بالجليكوزيل وتشكيل رابطة ثنائي كبريتيد.
أنظمة الثدييات
أنظمة التعبير الأكثر شيوعًا للثدييات هي خلايا مبيض الهامستر الصيني (CHO) وخلايا الكلى الجنينية البشرية (HEK).[25][25][26]
تُنتج البروتينات الخالية من الخلايا في المختبر باستخدام بوليميراز الحمض النووي الريبي المنقى، والريبوسومات، والحمض النووي الريبوزي الناقل، والنيوكليوتيدات الريبية. يمكن إنتاج هذه الكواشف عن طريق الاستخراج من الخلايا أو من نظام التعبير القائم على الخلية. نظرًا لانخفاض مستويات التعبير والتكلفة العالية للأنظمة الخالية من الخلايا، تُستخدم الأنظمة القائمة على الخلايا على نطاق واسع.[26]
^Baneyx F (أكتوبر 1999). "Recombinant protein expression in Escherichia coli". Current Opinion in Biotechnology. ج. 10 ع. 5: 411–21. DOI:10.1016/s0958-1669(99)00003-8. PMID:10508629.
^Cregg JM، Cereghino JL، Shi J، Higgins DR (سبتمبر 2000). "Recombinant protein expression in Pichia pastoris". Molecular Biotechnology. ج. 16 ع. 1: 23–52. DOI:10.1385/MB:16:1:23. PMID:11098467. S2CID:35874864.
^Rosser MP، Xia W، Hartsell S، McCaman M، Zhu Y، Wang S، Harvey S، Bringmann P، Cobb RR (أبريل 2005). "Transient transfection of CHO-K1-S using serum-free medium in suspension: a rapid mammalian protein expression system". Protein Expression and Purification. ج. 40 ع. 2: 237–43. DOI:10.1016/j.pep.2004.07.015. PMID:15766864.
^Lackner A، Genta K، Koppensteiner H، Herbacek I، Holzmann K، Spiegl-Kreinecker S، Berger W، Grusch M (سبتمبر 2008). "A bicistronic baculovirus vector for transient and stable protein expression in mammalian cells". Analytical Biochemistry. ج. 380 ع. 1: 146–8. DOI:10.1016/j.ab.2008.05.020. PMID:18541133.
^ ابVisser H، Joosten V، Punt PJ، Gusakov AV، Olson PT، Joosten R، وآخرون (يونيو 2011). "Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1". Industrial Biotechnology. ج. 7 ع. 3: 214–223. DOI:10.1089/ind.2011.7.214.
^"Definition: expression system". Online Medical Dictionary. Centre for Cancer Education, University of Newcastle upon Tyne: Cancerweb. 13 نوفمبر 1997. مؤرشف من الأصل في 2008-12-21. اطلع عليه بتاريخ 2008-06-10.
^"overexpression". Oxford Living Dictionary. Oxford University Press. 2017. مؤرشف من الأصل في 2018-10-20. اطلع عليه بتاريخ 2017-05-18. The production of abnormally large amounts of a substance which is coded for by a particular gene or group of genes; the appearance in the phenotype to an abnormally high degree of a character or effect attributed to a particular gene.
^Brinkrolf K، Schröder J، Pühler A، Tauch A (سبتمبر 2010). "The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production". Journal of Biotechnology. ج. 149 ع. 3: 173–82. DOI:10.1016/j.jbiotec.2009.12.004. PMID:19963020.
^Retallack DM، Jin H، Chew L (فبراير 2012). "Reliable protein production in a Pseudomonas fluorescens expression system". Protein Expression and Purification. ج. 81 ع. 2: 157–65. DOI:10.1016/j.pep.2011.09.010. PMID:21968453.
^Meissner D، Vollstedt A، van Dijl JM، Freudl R (سبتمبر 2007). "Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria". Applied Microbiology and Biotechnology. ج. 76 ع. 3: 633–42. DOI:10.1007/s00253-007-0934-8. PMID:17453196. S2CID:6238466.
^Altmann F، Staudacher E، Wilson IB، März L (فبراير 1999). "Insect cells as hosts for the expression of recombinant glycoproteins". Glycoconjugate Journal. ج. 16 ع. 2: 109–23. DOI:10.1023/A:1026488408951. PMID:10612411. S2CID:34863069.
^Kost TA، Condreay JP (أكتوبر 1999). "Recombinant baculoviruses as expression vectors for insect and mammalian cells". Current Opinion in Biotechnology. ج. 10 ع. 5: 428–33. DOI:10.1016/S0958-1669(99)00005-1. PMID:10508635.
^ ابYin J، Li G، Ren X، Herrler G (يناير 2007). "Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes". Journal of Biotechnology. ج. 127 ع. 3: 335–47. DOI:10.1016/j.jbiotec.2006.07.012. PMID:16959350.
^Dyring، Charlotte (2011). "Optimising the drosophila S2 expression system for production of therapeutic vaccines". BioProcessing Journal. ج. 10 ع. 2: 28–35. DOI:10.12665/j102.dyring.
^Olczak M، Olczak T (ديسمبر 2006). "Comparison of different signal peptides for protein secretion in nonlytic insect cell system". Analytical Biochemistry. ج. 359 ع. 1: 45–53. DOI:10.1016/j.ab.2006.09.003. PMID:17046707.
^ ابجدMcCarroll L، King LA (أكتوبر 1997). "Stable insect cell cultures for recombinant protein production". Current Opinion in Biotechnology. ج. 8 ع. 5: 590–4. DOI:10.1016/s0958-1669(97)80034-1. PMID:9353223.
^ ابجHacker DL، Balasubramanian S (يونيو 2016). "Recombinant protein production from stable mammalian cell lines and pools". Current Opinion in Structural Biology. New constructs and expression of proteins • Sequences and topology. ج. 38: 129–36. DOI:10.1016/j.sbi.2016.06.005. PMID:27322762.