كاشف تولنز (بالإنجليزية: Tollens' reagent) هو كاشف كيميائي يستخدم للتمييز بين الألدهيداتوالكيتونات مع بعض كيتونات ألفا هيدروكسي التي يمكن أن تتحول إلى ألدهيدات. يتكون الكاشف من محلول من نترات الفضةوالأمونيا وبعض هيدروكسيد الصوديوم (للحفاظ على الأس الهيدروجيني الأساسي لمحلول الكاشف). سميت على اسم مكتشفها الكيميائي الألماني برنارد تولنز.[1] يُشار إلى الاختبار الإيجابي باستخدام كاشف تولنز من خلال ترسيب عنصر الفضة، وغالبًا ما ينتج عنه «مرآة فضية» مميزة على السطح الداخلي لوعاء التفاعل.
تحضير المختبر
هذا الكاشف غير متوفر تجاريًا نظرًا لقصر مدة صلاحيته، لذلك يجب تحضيره على الجاهز في المختبر. تحضير واحد مشترك ينطوي على خطوتين. في البداية يتم إضافة بضع قطرات من هيدروكسيد الصوديوم المخفف إلى 0.1 مائي نترات الفضة. تقوم الأيونات بتحويل شكل مركب الفضة المائي إلى أكسيد الفضة الذي يترسب من المحلول كمادة صلبة بنية اللون.
في الخطوة التالية يتم إضافة كمية كافية من الأمونيا المائية لإذابة أكسيد الفضة البني (I). يحتوي المحلول الناتج على معقدات [Ag (NH 3) 2 ] + في الخليط وهو المكون الرئيسي لكاشف Tollens. يتم إعادة تشكيل هيدروكسيد الصوديوم:
بشكل بديل، يمكن إضافة الأمونيا المائية مباشرة إلى محلول نترات الفضة.[2] في البداية ستحث الأمونيا على تكوين أكسيد الفضة الصلب ولكن مع الأمونيا الإضافية يذوب هذا الراسب الصلب لإعطاء محلول واضح من مركب التنسيق الفضي (I). تساعد تصفية الكاشف قبل الاستخدام على منع النتائج الإيجابية الخاطئة.
الاستخدامات
التحليل العضوي النوعي
بمجرد تحديد وجود مجموعة كربونيل باستخدام 2,4-دينيتروفينيل هيدرازين (المعروف أيضًا باسم كاشف برادي أو 2,4-DNPH أو 2,4-DNP)، يمكن استخدام كاشف تولنز للتمييز بين الكيتونوالألدهيد. يعطي كاشف تولنز اختبارًا سلبيًا لمعظم الكيتونات مع استثناء واحد من كيتونات ألفا هيدروكسي.
يعتمد الاختبار على فرضية أن الألدهيدات تتأكسد بسهولة أكبر مقارنة بالكيتونات هذا بسبب الكربون المحتوي على الكربونيل الموجود في الألدهيدات والذي يحتوي على الهيدروجين. مركب ديامين الفضة (I) في الخليط هو عامل مؤكسد وهو المادة المتفاعلة الأساسية في كاشف تولنز. يتم إجراء الاختبار بشكل عام في أنبوب اختبار في حمام ماء دافئ.
في اختبار إيجابي يؤكسد مركب ديامين الفضة (I) الألدهيد إلى أيون كربوكسيل وفي هذه العملية يتم تقليله إلى عنصر الفضة والأمونيا المائية. تترسب الفضة الأولية من المحلول أحيانًا على السطح الداخلي لوعاء التفاعل، مما يعطي «مرآة فضية» مميزة. سيعطي أيون الكربوكسيل عند التحميض حمض الكربوكسيل المقابل له. لا يتشكل حمض الكربوكسيل مباشرة في المقام الأول حيث يحدث التفاعل تحت ظروف قلوية. المعادلات الأيونية للتفاعل الكلي موضحة أدناه تشير R إلى مجموعة ألكيل.[3]
يستخدم كاشف تولنز أيضًا لوضع مرآة فضية على الأواني الزجاجية على سبيل المثال داخل قارورة فراغ معزولة. تسمى العملية الكيميائية الأساسية تفاعل المرآة الفضية. العامل المختزل هو الجلوكوز (ألدهيد) لمثل هذه التطبيقات. الأواني الزجاجية النظيفة مطلوبة لمرآة عالية الجودة. لزيادة سرعة الترسيب، يمكن معالجة السطح الزجاجي مسبقًا باستخدام كلوريد القصدير (II) المثبت في محلول حمض الهيدروكلوريك.[5]
بالنسبة للتطبيقات التي تتطلب أعلى جودة بصرية كما هو الحال في مرايا التلسكوب فإن استخدام كلوريد القصدير (II) يمثل مشكلة لأنه يخلق خشونة على نطاق نانوي ويقلل من الانعكاسية.[6][7] تتضمن طرق إنتاج مرايا التلسكوب إضافات إضافية لزيادة الالتصاق ومرونة الفيلم كما هو الحال في طريقة مارتن والتي تتضمن حمض الطرطريكوالإيثانول.[7]
أمان
يمكن تدمير كاشف الشيخوخة باستخدام الحمض المخفف لمنع تكوين نيتريد الفضة شديد الانفجار.[8]
^Hart، M. (1992). Manual of scientific glassblowing. St. Helens, Merseyside [England]: British Society of Scientific Glassblowers. ISBN:0-9518216-0-1.
^
N. Chitvoranund1؛ S. Jiemsirilers؛ D.P. Kashima (2013). "Effects of surface treatments on adhesion of silver film on glass substrate fabricated by electroless plating". Journal of the Australian Ceramic Society. ج. 49: 62–69.{{استشهاد بدورية محكمة}}: صيانة الاستشهاد: أسماء عددية: قائمة المؤلفين (link)