تاداشي ناكامورا (لاعب كاراتيه)

تاداشي ناكامورا
(باليابانية: 中村忠)‏  تعديل قيمة خاصية (P1559) في ويكي بيانات
معلومات شخصية
الميلاد 22 فبراير 1942 (83 سنة)  تعديل قيمة خاصية (P569) في ويكي بيانات
خولمسك  تعديل قيمة خاصية (P19) في ويكي بيانات
مواطنة اليابان تعديل قيمة خاصية (P27) في ويكي بيانات
الحياة العملية
المدرسة الأم جامعة نيهون  تعديل قيمة خاصية (P69) في ويكي بيانات
تعلم لدى ماسوتاتسو أوياما  تعديل قيمة خاصية (P1066) في ويكي بيانات
المهنة لاعب كاراتيه  تعديل قيمة خاصية (P106) في ويكي بيانات
الرياضة الكاراتيه  تعديل قيمة خاصية (P641) في ويكي بيانات

تاداشي ناكامورا (باليابانية: 中村忠؛ بالكانا: なかむら ただし) هو لاعب كاراتيه ياباني، ولد في 22 فبراير 1942 في خولمسك في روسيا.[1][2][3]

مراجع

  1. ^ "International Karate Organization KYOKUSHINKAIKAN Domestic Black Belt List As of Oct.2000". Kyokushin karate sōkan : shin seishin shugi eno sōseiki e (極真カラテ総鑑 : 新・精神主義への創世紀へ). Aikēōshuppanjigyōkyoku (株式会社I.K.O.出版事務局): 62–64. 2001. ISBN:4-8164-1250-6.
  2. ^ Vasquez، Emily (10 يونيو 2006). "After 30 Years, a Man's Vision for Karate Thrives as a Way of Life". The New York Times. مؤرشف من الأصل في 2019-12-14. اطلع عليه بتاريخ 2010-08-07.
  3. ^ "Worldwide Dojo Directory". World Seido Karate Organization. مؤرشف من الأصل في 2018-11-10. اطلع عليه بتاريخ 2016-10-25.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Irman Syah (lahir 2 Oktober 1965) adalah seorang penyair dan pemain teater nasional. SD dan MTsN diselesaikannya di kampung halaman (Tilatang Kamang). Setelah itu, melanjutkan pendidikan ke MAN Koto Baru Padang Panjang jurusan IPA. Kemudian, Irman Sya...

 

Kejurnas PSSI Divisi UtamaMusim1985JuaraPSMS MedanKemenangan kandangterbesarPersib 4–0 PSP(31 Januari 1985)Persib 4–0 Persija Pusat(6 Februari 1985)Persib 4–0 Persebaya(15 Februari 1985)Kemenangan tandangterbesarPSP 0–3 PSMS(24 September 1983)Pertandingan terbanyak gol6 golPSM 4–2 Persipura(21 Januari 1985)PSMS 4–2 Persebaya(18 Februari 1985)← 1983 1986 → Kejurnas PSSI 1985 Divisi Utama merupakan turnamen yang diadakan PSSI dari 15 Januari - 23 Februari 1985. Divisi Utama dala...

 

Serbian paramilitary unit Not to be confused with Serb Volunteer Guard. ScorpionsInsignia of the Scorpions paramilitary unitActive1991–1999Country SFR Yugoslavia (1991) Serbian Krajina (1992–1995) FR Yugoslavia (1995–1999)TypeParamilitaryPatronSaint SavaColors  Black  RedEngagements Croatian War of Independence Battle of Vukovar Berak massacre Bosnian War Siege of Srebrenica Srebrenica massacre[1] Kosovo War Podujevo massacre Military unit The Scorpions (Serbian Cyrill...

Canadian ice hockey player (born 1974) Ice hockey player Jason Arnott Arnott with the Washington Capitals in 2011Born (1974-10-11) October 11, 1974 (age 49)Collingwood, Ontario, CanadaHeight 6 ft 5 in (196 cm)Weight 220 lb (100 kg; 15 st 10 lb)Position CentreShot RightPlayed for Edmonton OilersNew Jersey DevilsDallas StarsNashville PredatorsWashington CapitalsSt. Louis BluesNational team  CanadaNHL Draft 7th overall, 1993Edmonton OilersPlaying care...

 

Flaminia Civita CastellanaNama lengkapAssociazione Sportiva Dilettantistica Flaminia Civita CastellanaBerdiri2008StadionStadio Turiddu Madami,Civita Castellana, ItalyKetuaRoberto CiappiciManajerRosolino PuccicaLigaSerie D/E2011-12Serie D/E, 13th Kostum kandang Kostum tandang Associazione Sportiva Dilettantistica Flaminia Civita Castellana adalah klub sepak bola Italia yang berada di Civita Castellana, Lazio. Saat ini mereka bermain di Seri D. lbsSerie D Klub 2019–2020 Girone A Borgosesia Br...

 

Gábor Pogány (Budapest, 28 ottobre 1915 – Roma, 30 ottobre 1999) è stato un direttore della fotografia ungherese naturalizzato italiano. Indice 1 Biografia 2 Filmografia 3 Bibliografia 4 Altri progetti 5 Collegamenti esterni Biografia Nato in Ungheria a Budapest, frequenta la facoltà di Architettura della sua città. Dopo essersi laureato, si trasferisce in Inghilterra, occupandosi di fotografia legata al cinema sino a diventare aiuto operatore. Alla fine degli anni trenta arriva a Roma...

Football match1973 Football League Cup FinalMatch programme coverEvent1972–73 Football League Cup Tottenham Hotspur Norwich City 1 0 Date3 March 1973VenueWembley Stadium, LondonRefereeDavid Smith (Stonehouse)Attendance100,000← 1972 1974 → The 1973 Football League Cup Final was held on 3 March 1973 and was won by Tottenham Hotspur. Spurs beat Norwich City 1–0 at the old Wembley. After 12 different teams had won the League Cup in its first 12 seasons, Spurs became the first team...

 

SemperoperSemperoper pada malam hariLokasiDresden, JermanKoordinat51°03′16″N 13°44′07″E / 51.05444°N 13.73528°E / 51.05444; 13.73528Koordinat: 51°03′16″N 13°44′07″E / 51.05444°N 13.73528°E / 51.05444; 13.73528TipeGedung opera, balai konserKonstruksiDidirikan1841 (pertama)1878 (rekonstruksi pertama)1985 (rekonstruksi kedua)ArsitekGottfried SemperSitus webSitus web resmi Semperoper adalah gedung opera Sächsische Staatsoper...

 

Technique in statistics The set of all normal distributions forms a statistical manifold with hyperbolic geometry. Information geometry is an interdisciplinary field that applies the techniques of differential geometry to study probability theory and statistics. [1] It studies statistical manifolds, which are Riemannian manifolds whose points correspond to probability distributions. Introduction This article may need to be rewritten to comply with Wikipedia's quality standards, as Thi...

American college basketball season 2013–14 Delaware Fightin' Blue Hens men's basketballCAA Regular Season & tournament championsNCAA tournament, round of 64ConferenceColonial Athletic AssociationRecord25–10 (14–2 CAA)Head coachMonté Ross (8th season)Assistant coaches Jeff Rafferty Phil Martelli, Jr. Chris Cheeks Home arenaBob Carpenter CenterSeasons← 2012–132014–15 → 2013–14 CAA men's basketball standings vte Conf Overall Team W   L  ...

 

Emile Heskey Heskey saat memperkuat Inggris pada tahun 2010Informasi pribadiNama lengkap Emile William Ivanhoe Heskey[1]Tanggal lahir 11 Januari 1978 (umur 46)Tempat lahir Leicester, InggrisTinggi 188 m (616 ft 9+1⁄2 in)[2]Posisi bermain PenyerangKarier junior1987–1994 Leicester CityKarier senior*Tahun Tim Tampil (Gol)1994–2000 Leicester City 154 (40)2000–2004 Liverpool 150 (39)2004–2006 Birmingham City 68 (14)2006–2009 Wigan Athletic 82 (1...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

Territory ruled by an exarch This article may be in need of reorganization to comply with Wikipedia's layout guidelines. Please help by editing the article to make improvements to the overall structure. (January 2016) (Learn how and when to remove this message) An exarchate is any territorial jurisdiction, either secular or ecclesiastical, whose ruler is called an exarch. Byzantine Emperor Maurice created the first exarchates in the recently reconquered provinces of the former Western Empire....

 

1890 United States law The Sherman Silver Purchase Act was a United States federal law enacted on July 14, 1890.[1] The measure did not authorize the free and unlimited coinage of silver that the Free Silver supporters wanted. It increased the amount of silver the government was required to purchase on a recurrent monthly basis to 4.5 million ounces.[2][3] The Sherman Silver Purchase Act had been passed in response to the growing complaints of farmers' and miners' inte...

 

Railway division of India This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hyderabad railway division – news · newspapers · books · scholar · JSTOR (November 2015) (Learn how and when to remove this message) Hyderabad railway divisionHeadquarters at KachegudaOverviewHeadquartersKachegudaReporting markHYBLocal...

Karta över countyn i delstaten New York. I delstaten New York i USA finns 62 countyn, varav 57 utanför staden New York.[1] County Huvudort (County Seat) Grundat Albany County Albany 1683 Allegany County Belmont 1806 Bronx County New York 1914 Broome County Binghamton 1806 Cattaraugus County Little Valley 1808 Cayuga County Auburn 1799 Chautauqua County Mayville 1808 Chemung County Elmira 1836 Chenango County Norwich 1798 Clinton County Plattsburgh 1788 Columbia County Hudson 1786 Cortland C...

 

Commune and town in Sétif Province, AlgeriaGuelta ZerkaCommune and townCountry AlgeriaProvinceSétif ProvinceTime zoneUTC+1 (CET) Guelta Zerka is a town and commune in Sétif Province in north-eastern Algeria.[1] References Algeria portal ^ Communes of Algeria. Statoids. Retrieved December 12, 2010. vte Sétif ProvinceCapital: SétifDistricts Aïn Arnat Babor Béni Aziz Béni Ourtilane Bir El Arch Bouandas Bougaâ Djémila El Eulma Guenzet Guidjel Hammam Guergour Hammam Souhna M...

 

Cognitive process For other uses, see Pattern recognition (disambiguation). In psychology and cognitive neuroscience, pattern recognition describes a cognitive process that matches information from a stimulus with information retrieved from memory.[1] Pattern recognition occurs when information from the environment is received and entered into short-term memory, causing automatic activation of a specific content of long-term memory. An early example of this is learning the alphabet in...

This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Rajhesh Vaidhya – news · newspapers · books · scholar · JSTOR (March 2011) (Learn how and when to remove this message) Rajhesh Vaidhya performing ...

 

Geometry problem on tiling by hypercubes For Keller's conjecture about polynomial maps, see Jacobian conjecture. In this tiling of the plane by congruent squares, the green and violet squares meet edge-to-edge as do the blue and orange squares. In geometry, Keller's conjecture is the conjecture that in any tiling of n-dimensional Euclidean space by identical hypercubes, there are two hypercubes that share an entire (n − 1)-dimensional face with each other. For instance, in any tiling of...