الطاقة المتجددة في روسيا

Photograph of the Sayano-Shusenskaya Dam.
سد سايانو شوشنسكايا، أكبر مصدر للطاقة الكهرمائية في روسيا.

تعتمد الطاقة المتجددة في روسيا في الأساس على الطاقة الكهرمائية. فروسيا هي خامس أكثر دولة إنتاجًا للطاقة المتجددة في العالم، لكنها ستكون السادسة والخمسين إذا استثنيت الطاقة الكهرمائية من الحسابات.[1] حوالي 179 تيرا-وات-ساعة من طاقة روسيا مصدرها الطاقة المتجددة، من إجمالي 1823 تيرا-وات-ساعة منتجة.[2] تغطي الطاقة الكهرمائية 16% من كهرباء روسيا، بينما تغطي باقي مصادر الطاقة المتجددة أقل من 1% مجتمعة. ونحو 68% من كهرباء روسيا تنتجها المحطات الحرارية و16% من الطاقة النووية الكامنة.[3]

رغم وجود غالبية محطات الطاقة الكهرمائية الكبرى منذ الحقبة السوفييتية، كانت الحاجة لتوفير مصادر أخرى للطاقة المتجددة ضئيلة نتيجة وفرة الوقود الأحفوري في الاتحاد السوفيتي. توجد حاليًا مخططات لتطوير كافة أنواع الطاقة المتجددة والتي تشجع بقوة من الحكومة الروسية.[4] فقد دعا الرئيس الروسي دميتري ميدفيديف لزيادة حصة الطاقة المتجددة من إنتاجية الطاقة في روسيا، كما اتخذ خطوات لتشجيع تنمية الطاقة المتجددة في روسيا منذ 2008.[5]

التاريخ

Postmark commemorating the Stalingrad Hydroelectric Power Station
كانت محطات الطاقة الكهرمائية الكبرى من بين المشاريع الشوعية الكبرى في الاتحاد السوفيتي. (في الصورة محطة فولغا الكهرمائية)

تعد معظم مصادر الطاقة المتجددة حديثة على روسيا، كما تشهد تطورات في السنوات الأخيرة. على الرغم من ذلك، للطاقة الكهرمائية تاريخ طويل في روسيا يتمد للحقبة السوفيتية. بدأ الانتشار السريع للطاقة الكهرمائية في الاتحاد السوفيتي عام 1930، كانت حينها قدرة المحطات الإجمالية 600 ميجا-وات-ساعة. وفي عام 1941، بنى الاتحاد السوفيتي أول طاحونة هوائية، بلغت قدرتها 100 كيلو-وات.[6] ومع حل الاتحاد السوفيتي عام 1990، بلغت القدرة الإجمالية حينها 65 جيجا-وات-ساعة. بنيت أكبر سدود روسيا -من بينها سد سايانو شوشينسكايا- في خمسينيات وستينيات القرن العشرين.[7] وفي الفترة بين سبعينيات القرن العشرين وعام 2000، ركز الاتحاد السوفيتي وروسيا بشكل رئيسي على مصادر الطاقة المعتادة مثل الطاقة الحرارية والكهرمائية والنووية.[6] على الرغم من ذلك، أعلنت حكومة الاتحاد السوفيتي عام 1986 عن أهداف جديدة للطاقة، تضمنت تشييد محطات طاقة كهرومائية أخرى بالإضافة لبدء استخدام الطاقة الشمسية وطاقة الرياح على نطاق صغير لتوليد الكهرباء. ركزت إستراتيجية الطاقة للاتحاد السوفيتي على الطاقة النووية والحرارية، لكن مع عدم إهمال الطاقة المتجددة تمامًا. منع تفكك الاتحاد السوفيتي هذه الأهداف من أن تتحقق.[8]

انتهى بناء السدود الكبيرة في حقبة الاتحاد السوفيتي بصورة كبيرة في التسعينيات مع تأسيس روسيا الاتحادية. أيضًا تعرض كثير من البنية التحتية للبلاد بما فيها السدود للهلاك نتيجة الركود الذي تلى انهيار الاتحاد السوفيتي.[7][9] أهملت أيضًا الطاقة المتجددة وأولي النفط والغاز اهتمامًا كبيرًا في روسيا. استمرت هذه السياسات حتى 2008، عندما أعلن ميدفيديف عن تحسينات في سياسات الطاقة الروسية في محاولة لتسليط الضوء على الطاقة المتجددة. ومنذ ذلك الحين وهناك نمو سريع في مصادر الطاقة المتجددة الجديدة.[10]

الوقت الحالي

Pie graph detailing distribution of Russian electricity generation by source
إنتاج الكهرباء في روسيا حسب المصدر في عام 2008، بلغت نسبة الطاقة الكهرمائية 16% في ذلك العام. بينما مثّلت باقي مصادر الطاقة المتجددة أقل من 1%.

تعد روسيا واحدة من أكبر دول العالم إنتاجًا للطاقة، ينتج معظمها من النفط والغاز الطبيعي والفحم. تعتمد روسيا على هذه المصادر للإنتاج والتصدير الذي يمثل 80% من إيرادات التجارة الخارجية، مما يعني أنها تولي اهتمامًا ضئيلًا للطاقة المتجددة. تمتلك روسيا 203 جيجا-وات قدرة توليد كهرباء، 44 جيجا-وات منها مصدرها الطاقة الكهرومائية، و307 ميجا-وات من الطاقة الحرارية الجوفية، و15 ميجا-وات من طاقة الرياح، بالإضافة لكميات ضئيلة من باقي المصادر المتجددة.[11][12] في عام 2009، أنتجت روسيا ما مجموعه 992 تيرا-وات-ساعة من الكهرباء، 172 تيرا-وات-ساعة منها من محطات الطاقة الكهرومائية.[13] تحتاج بعض محطات الطاقة الكهرومائية في روسيا إلى استثمارات إضافية لتحديثها، تجلى ذلك في حادثة محطة سايانو شوشينسكايا عام 2009.[1]

أعلن الرئيس دميتري ميدفيديف في مايو 2010 أن الحكومة الروسية ستنظر بعناية في شراء الكهرباء المولدة من مصادر الطاقة المتجددة كمحاولة لتشجيع تنمية الطاقة المتجددة. تمتلك الحكومة خططًا لجعل إنتاجية المصادر المتجددة -غير الكهرومائية- تمثل 4.5% من إجمالي إنتاج الطاقة في روسيا.[5] أيضًا، وفي نوفمبر 2010، وافقت الحكومة على برنامج بقيمة 300 مليار دولار يعمل على جعل المصانع والمباني أكثر فعالية في استخدام الطاقة، أعلنت أيضًا عن خطط لبناء ثمانية مصانع مصابيح موفرة للطاقة ولتدوير النفايات ودعم إنشاء مصنع للسيارات الهجينة. أعلن ميدفيديف في نهاية 2009 عن رغبته في تقليص استهلاك الطاقة في روسيا بنسبة 40% بحلول عام 2020.[10][14] في الوقت الحاضر، تباطئ النمو نتيجة انخفاض الاستثمار والاستقرار الاقتصادي، بالإضافة لنقص الطلب وانخفاض أسعار الكهرباء والحرارة.[15] دعم الغاز الطبيعي هو عقبة أخرى لنمو الطاقة المتجددة.[16]

الطاقة الكهرمائية

refer to caption
محطة سيغولي الكهرومائية خلال طوفان

الطاقة الكهرمائية هي أكثر صور الطاقة المتجددة استخدامًا في روسيا، وهناك إمكانية لزيادة الإنتاجية بصورة كبيرة. تمتلك روسيا 102 محطة طاقة كهرمائية بسعة 100 ميجا-وات، ما يجعلها خامس دول العالم في إنتاج الطاقة الكهرمائية. كما أنها ثاني دول العالم من حيث احتياطي الطاقة الكهرمائية، على الرغم من ذلك فهي تستفيد من 20% فقط.[7] روسيا هي موطن 9% من الطاقة الكهرمائية حول العالم، [15] معظمها في سيبيريا وأقصى شرق روسيا. بنهاية 2005، وصلت قدرة مصادر الطاقة الكهرمائية إلى 45,700 ميجا-وات بالإضافة لـ5,648 ميجا-وات إضافية تحت الإنشاء. يعتقد مجلس الطاقة العالمي بامتلاك روسيا لاحتياطي كبير من الطاقة الكهرمائية، يصل نظريًا لـ2,295 تيرا-وات-ساعة في العام، منها 852 تيرا-وات- ساعة مجدية اقتصاديًا.[12]

يعد سد سايانو شوشنسكايا هو أكبر سدود روسيا بقدرة 6,400 ميجا-وات، يليه سد كراسنويارسك (6,000 ميجا-وات) وسد براتسك (4,500 ميجا-وات) وسد أوست-إيليمسك (4,320 ميجا-وات) وسد زييا (1,330 ميجا-وات).[7] ومن أحدث السدود؛ سد بوريا (2010 ميجا-وات) وسد إرغاناي (800 ميجا-وات). ومن السدود الواقعة تحت الإنشاء سد بوغوشاني (1920 ميجا-وات) وسد زيلينشوك (320 ميجا-وات) وسد زاراماغ (352 ميجا-وات) وسد نيزني-تشيريكسكي (60 ميجا وات).[12] رَس هيدرو (RusHydro) هي أكبر شركة طاقة كهرمائية في روسيا وثاني أكبر منتج للطاقة الكهرمائية في العالم.[17] في أكتوبر 2010، وقّعت شركة تشاينا يانغتسي باور (China Yangtze Power) أكبر شركة طاقة كهرمائية في الصين وشركة يورو سِب إنيرجو (EuroSibEnergo) الروسية اتفاق شراكة لزيادة إنتاج الطاقة الكهرمائية في روسيا وتصدير الطاقة لمقاطعات الصين الشمالية.[18] تخطط شركة وست سايبيريان جينيريتينغ (West Siberian Generating) لبدء تشييد ثماني محطات طاقة كهرمائية صغيرة في منطقة ألتاي قبل حلول عام 2015.[19]

وفي 17 أغسطس 2009، حدث انفجار في محطة سايانو شوشنسكايا للطاقة الكهرمائية، تسبب في مقتل 75 عاملًا وإصابة 13. استنتجت تحقيقات الدائرة الاتحادية للإشراف البيئي والتكنولوجي والنووي أن الإدارة الضعيفة والعيوب الفنية كانتا السبب في الكارثة.[20] حدث الانفجار بسبب توربينة عمرها 29 عامًا تعرضت لاهتزازات مفرطة غير منضبطة. منذ ذلك الحين، طالب مسؤولو رَس هايدرو وعمال المحطة بإشراف وأمان أكبر في المحطات الكهرمائية.[20][21]

الطاقة الحرارية الجوفية

الطاقة الحرارية الجوفية هي ثاني أكثر صور الطاقة المتجددة استخدامًا في روسيا، لكنها تمثل أقل من 1% من إجمالي إنتاج الطاقة. بنيت أول محطة طاقة حرارية جوفية في روسيا في بوزختكا، شبه جزيرة كامشاتكا عام 1966، بقدرة 5 ميجا-وات. بلغ إجمالي قدرة الطاقة الحرارية الجوفية عام 2005 79 ميجا-وات، 50 ميجا-وات منها من محطة في فيركين-موتنوفسكي. تنفذ روسيا حاليًا محطة بقدرة 100 ميجا-وات في موتنوفسكي وأخرى بقدرة 50 ميجا-وات في كالينينغراد.[12] تستخدم معظم الطاقة المتولدة حاليًا لتدفئة المباني في شمال القوقاز وشبه جزيرة كامشاتكا. يستخدم نصف إنتاج الطاقة الحرارية الجوفية لتدفئة المنازل والمباني، بينما يستخدم ثلثه لتدفئة الدِفاء الزراعية، ويستخدم 13% لأغراض صناعية.[22]

في أكتوبر 2010، أعلن وزير الطاقة الروسي سيرجي شماتكو أن روسيا وأيسلندا قد تعملان معًا لتطوير مصادر الطاقة الحرارية الجوفية بكامتشاتكا.[23] تدرس روسيا أيضًا إمكانيات جذب الاستثمار الأجنبي لتنمية الطاقة الحرارية الجوفية في جزر الكوريل.[24]

الطاقة الشمسية

التشميس في أوروبا

تعتبر الطاقة الشمسية منعدمة في روسيا، على الرغم من إمكانية توليد الكثير. افتتحت أول محطة للطاقة الشمسية في أوبلاست بيلغورود في نوفمبر 2010.[25] تمتلك روسيا طاقة شمسية ممكن استغلالها تقدر نظريًا بـ2,213 تيرا-وات-ساعة/عام، منها 101 تيرا-وات-ساعة مجدية اقتصاديًا. تمتلك الأجزاء الجنوبية من روسيا وبخاصة شمال القوقاز أكبر إمكانية لتوليد الطاقة الشمسية.[12] تخطط روسيا لتحقق قدرة 150 ميجا-وات من الطاقة الشمسية بحلول 2020.[26]

أعلنت روسيا عن خططها لتنفيذ محطة طاقة شمسية جديدة بقدرة 12.3 ميجا-وات في البحر الأسود بحلول 2012. سيقام المشروع من خلال روسنانو ورينوفا.[27] يعمل روسناو وسولار وايند إل إل سي على بناء مصنع لإنتاج خلايا شمسية ذات جانبين لتكون قادرة على جمع الطاقة الشمسية من جانبين. من المتوقع أن ينتهي التشييد بحلول بداية 2011، وستكون قدرة المحطة السنوية 30 ميجا-وات.[26] تعتبر نيتول سولار هي أكبر شركة روسية في مجال تطوير وصناعة منتجات توليد الطاقة الشمسية.[28] تتناقش روسيا والهند حاليًا بخصوص مشروع إنتاج مشترك لإنتاج رقاقات سيليكون لصناعة ألواح ضوئية[29]

طاقة الرياح

refer to caption
توربينة رياح بالقرب من فندق أومني، مورمانسك. إمكانية توليد طاقة الرياح من منطقة أوبلاست مورمانسك هي الأكبر على الإطلاق في روسيا.

تمتلك روسيا تاريخًا طويلًا في استخدام طاقة الرياح على نطاق صغير لكنها لم ترتقي بعد لإنتاج الطاقة تجاريًا على نطاق كبير. معظم إنتاج طاقة الرياح حاليًا يقع في المناطق الزراعية بكثافة سكانية منخفضة، 6,218 تيرا-وات-ساعة/عام منها مجدية اقتصاديًا.[12] معظم طاقة الرياح الممكن الاستفادة منها توجد في السهوب الجنوبية وسواحل روسيا، على الرغم من أن العديد من هذه المناطق تصل الكثافة السكانية فيها لأقل من شخص لكل كيلومتر مربع.

يشير الانخفاض السكاني في هذه المناطق إلى بنية تحتية ضعيفة في تلك المناطق، وهو ما يعيق الاستفادة من تلك المصادر وتنميتها.[6] في 2006، بلغ إجمالي ما ينتج من قدرة طاقة الرياح 15 ميجا-وات.[30] كما تصل قدرة مشاريع طاقة الرياح مجتمعة إلى ما يزيد عن 1,700 ميجا-وات. يتوقع الاتحاد الروسي لطاقة الرياح أنه إذا استطاعت روسيا تحقيق هدفها بتوليد 4.5% من طاقتها من مصادر الطاقة المتجددة بحلول 2020، ستكون قدرة طاقة رياح 7 جيجا-وات.[31]

في 2010، أعلن عن خطط لإنشاء محطة طاقة رياح في ييسك، على بحر آزوف. من المتوقع أن تكون القدرة مبدأيًا 50 ميجا-وات، والتي ستصبح 100 ميجا-وات في العام التالي.[30] كما أعلنت الشركة الهندسية الألمانية سيمنز في يوليو 2010 عقب زيارة أنغيلا ميركل لروسيا عن إمكانية بناء محطات طاقة رياح في روسيا.[1] بحلول 2015، تأمل الشركة تحقيق قدرة 1,250 ميجا-وات في روسيا[31]

طاقة المد والجزر

Map showing the location of the Penzhin Bay
شاطئ بينزهين هو الموقع المقترح لمحطة بينزهين لطاقة المد والجزر، والتي من الممكن أن تكون أكبر محطة طاقة كهربية في العالم.

تمتلك روسيا العديد من مصادر طاقة المد والجزر، لكنها غير مستغلة بصورة جيدة حاليًا. يستطيع شاطئ كولا وبحر أوخوتسك وحدهم توليد 100 جيجا-وات من خلال محطات طاقة المد والجزر، فطاقة المد والجزر الممكن توليدها في روسيا تستطيع أن تنافس إنتاج الطاقة الكلي الحالي.[32] محطة كيسلايا غوبا لطاقة المد والجزر وهي محطة نشطة حاليًا هي أكبر محطة طاقة مد وجزر في روسيا، ورابع أكبر محطة مد مجزر في العالم بسعة (1.7 ميجا-وات).[33]

أعلن عن خطط لإنشاء محطة طاقة مد وجزر بقدرة 800 ميجا-وات في بحر بارنتس عام 2008.[34] تتضمن المشاريع طويلة المدى محطة بينزهين لطاقة المد والجزر والتي من الممكن أن تصبح أكبر محطة طاقة في العالم بقدرة تصل لـ87 جيجا-وات وإنتاج سنوي يصل إلى 200 تيرا-وات-ساعة.[35]

الوقود الحيوي

تعتبر صناعة الوقود الحيوي في روسيا حديثة، لكنها تشهد نموًا سريعًا في السنوات الأخيرة. فروسيا واحدة من أكبر منتجي الحبوب، وصناعة الكحول الإيثيلي لديها متطورة بصورة جيدة، كما أن لديها معدلات إنتاج مرتفعة للسلجم (يستخدم أحيانًا لإنتاج الديزل الحيوي).[36] وكانت الحكومة الروسية قد صرحت عام 2008 أنها ستلعب دورًا هامًا في تطوير صناعة الوقود الحيوي من خلال بناء 30 مصنع للوقود الحيوي وتقديم إعفاءات ضريبية ودعم لمشاريع طاقة الوقود الحيوي.[37] على الرغم من تأجيل هذه الخطط، أعلن ميدفيديف في 13 سبتمبر 2010 أن هذه التشييدات ستبدأ في بدايات 2011.[38] تنتج هذه المصانع البوتانول الحيوي، ويمكن إنتاجه أيضًا من مخلفات الخشب مثل رقائق الخشب ونشارته.[36][37][39]

Photograph of the Shatura Power Station
محطة شاتورا للطاقة هي أكبر محطة في العالم من حيث القدرة

أنتجت شركة لادا للسيارات أول سيارة تدار بالوقود الحيوي في نوفمبر 2010. كما أعلن نائب رئيس النقل أن الشركات الروسية تعمل حاليًا على تطوير مروحيات تعمل بالوقود الحيوي.[37] وتأمل روسيا تصدير الوقود الحيوي للاتحاد الأوروبي،[40] وتتوقع شركة التكنولوجيا الحيوية أن روسيا قادرة على تصدير 40 مليون طن من الوقود الحيوي سنويًا.[41]

الكتلة الحيوية

تستخدم الكتلة الحيوية بالفعل في بعض الأنحاء في روسيا لتوليد ما مجموعة 1% أو 9 تيرا-وات-ساعة/عام من إجمالي إنتاج روسيا للطاقة. على الرغم من ذلك المقدار الضئيل، تستطيع روسيا إنتاج ما يقدر تقنيًا بـ431 تيرا-وات-ساعة/عام (منها 285 تيرا-وات-ساعة مجدية اقتصاديًا)[42][43] نظرًا لما تمتلكه روسيا من غابات شاسعة واحتياطيات خث.[nb 1] معظم هذا المخزون يوجد في شمال غرب روسيا، حيث تزدهر صناعتي لب الورق والورق والتي ينتج عنها مخلفات خشبية تستخدم ككتلة حيوية.[44]

برز استخدام الخث لإنتاج الطاقة أثناء حقبة الاتحاد السوفيتي، مع وصوله لأعلى مستوى عام 1965 ثم بدأ بالانخفاض منذ ذلك الحين. في عام 1929، أنتج أكثر من 40% من طاقة الاتحاد السوفيتي الكهربية من الخث، ثم انخفض إلى 1% بحلول عام 1980. حاليًا، تنتج روسيا 17% من الخث في العالم، تستخدم 20% مما تنتج من الخث (1.5 مليون طن) لأغراض الطاقة.[12][45] تعد محطة شاتورا للطاقة في محافظة موسكو ومحطة كيروف للطاقة في أوبلاست كيروف هما أكبر محطتي طاقة خث في العالم.[46][47]

انظر أيضا

ملاحظات

  1. ^ لا يعتبر الخث عالميًا كمصدر متجدد للكتلة الحيوية بسبب فترة إعادة الإنتاج الطويلة.

مراجع

  1. ^ ا ب ج Trevor Sievert (23 يوليو 2010). "Russia- Russian Wind Power". Industry News. مؤرشف من الأصل في 2012-03-20. اطلع عليه بتاريخ 2011-02-25.
  2. ^ Raili Kajaste (23 أكتوبر 2008). Oct08.pdf "NEFCO Renewable Energy Projects in Russia" (PDF). NEFCO. مؤرشف من الأصل (PDF) في 2012-03-20. اطلع عليه بتاريخ 2011-02-26. {{استشهاد ويب}}: تحقق من قيمة |مسار أرشيف= (مساعدة)
  3. ^ "Russia- Electrity". U.S. Energy Information Administration. نوفمبر 2010. مؤرشف من الأصل في 2010-12-28. اطلع عليه بتاريخ 2011-01-23.
  4. ^ Anastasia Kostomarova, James Blake (25 أغسطس 2009). "Russian renewable energy prepares for a bigger slice of the power pie". Business RT. مؤرشف من الأصل في 2020-05-11. اطلع عليه بتاريخ 2011-01-23.
  5. ^ ا ب Mikhail Klementiev (27 مايو 2010). "Medvedev orders incentives for renewable energy use". RIA Novosti. مؤرشف من الأصل في 2013-07-23. اطلع عليه بتاريخ 2011-01-23.
  6. ^ ا ب ج Renewables: The Energy for the 21st Century. World Renewable Energy Congress VI. 1–7 يوليو 2000. مؤرشف من الأصل في 2019-12-16. اطلع عليه بتاريخ 2011-02-25.
  7. ^ ا ب ج د "Hydropower in Russia". RusHydro. 2008–2009. مؤرشف من الأصل في 2018-10-21. اطلع عليه بتاريخ 2011-01-28.
  8. ^ "Soviet Union- Energy Planning Goals". country-data.com. مايو 1989. مؤرشف من الأصل في 2018-06-21. اطلع عليه بتاريخ 2011-01-30.
  9. ^ Andrew Kramer (20 أغسطس 2009). "Decaying Soviet Infrastructure Shows Its Era". The New York Times. مؤرشف من الأصل في 2017-12-27. اطلع عليه بتاريخ 2011-01-30.
  10. ^ ا ب David Amstell (10 ديسمبر 2009). "Russian Energy efficiency: Medvedev's new favourite topic?". PE Power & Energy. مؤرشف من الأصل في 2011-07-14. اطلع عليه بتاريخ 2011-01-30.
  11. ^ "Russia – Grid Summary". Global Energy Network Institute. 2010. مؤرشف من الأصل في 2018-10-09. اطلع عليه بتاريخ 2011-01-23.
  12. ^ ا ب ج د ه و ز "2007 Survey of Energy Resources" (PDF). World Energy Council 2007. 2007. مؤرشف من الأصل (PDF) في 2014-05-27. اطلع عليه بتاريخ 2011-01-23.
  13. ^ "14.24. BASIC INDICATORS OF ORGANISATIONS BY KIND OF ECONOMIC ACTIVITIES – "PRODUCTION AND SUPPLY OF ELECTRICITY, GAS AND WATER"". Федеральная служба государственной статистики. 2010. مؤرشف من الأصل في 2016-03-05.
  14. ^ Rachel Morarjee (18 نوفمبر 2010). "Red to green: Russia begins energy saving". Business New Europe. مؤرشف من الأصل في 2012-07-11. اطلع عليه بتاريخ 2011-01-29.
  15. ^ ا ب "Russia". European Bank for Reconstruction and Development. 2010. مؤرشف من الأصل في 2018-07-29. اطلع عليه بتاريخ 2011-01-23.
  16. ^ Indrea Overland, Heidi Kjaernet (2009). Russian Renewable Energy – The Potential for International Cooperation. Ashgate Publishing Ltd. مؤرشف من الأصل في 2020-04-14. اطلع عليه بتاريخ 2011-02-25.
  17. ^ "Russia appoints Sechin ally to manage hydro giant". Reuters. 23 نوفمبر 2009. مؤرشف من الأصل في 2015-02-12. اطلع عليه بتاريخ 2011-01-30.
  18. ^ "Russia's EuroSibEnergo signs deal with China's hydro power corporation". RIA Novosti. 2 ديسمبر 2010. مؤرشف من الأصل في 2012-03-16. اطلع عليه بتاريخ 2011-02-26.
  19. ^ "West Siberian genco to build 8 hydro-electric plants in Altai". RIA Novosti. 15 ديسمبر 2010. مؤرشف من الأصل في 2012-10-21. اطلع عليه بتاريخ 2011-02-26.
  20. ^ ا ب Joe Hasler (2 فبراير 2010). "Investigating Russia's Biggest Dam Explosion: What Went Wrong". Popular Mechanics. مؤرشف من الأصل في 2014-09-03. اطلع عليه بتاريخ 2011-12-06.
  21. ^ "Report Lays Out Blame for Power Plant Explosion". The Other Russia. 29 ديسمبر 2009. مؤرشف من الأصل في 2019-04-20. اطلع عليه بتاريخ 2011-12-06.
  22. ^ Valentina Svalova (سبتمبر 2003). "Geothermal energy use in Russia" (PDF). International Geothermal Conference. مؤرشف من الأصل (PDF) في 2016-03-05. اطلع عليه بتاريخ 2011-01-23.
  23. ^ "Russia, Iceland to tap geothermal energy sources: minister". China Daily. 26 أكتوبر 2010. مؤرشف من الأصل في 2019-12-16. اطلع عليه بتاريخ 2011-02-25.
  24. ^ "Moscow ready to offer breaks to foreign investors on Kurils". RIA Novosti. 11 فبراير 2011. مؤرشف من الأصل في 2012-10-21. اطلع عليه بتاريخ 2011-03-06.
  25. ^ "The first solar power plant has been constructed in Russia". Newsland. 13 نوفمبر 2010. مؤرشف من الأصل في 2010-11-15. اطلع عليه بتاريخ 2011-03-15.
  26. ^ ا ب "Sunless Russia seeks more solar energy". International Business Times. 8 أكتوبر 2010. مؤرشف من الأصل في 2012-04-06. اطلع عليه بتاريخ 2011-01-30.
  27. ^ "Russia to build first solar power plant". Power-GEN Worldwide. 3 نوفمبر 2010. مؤرشف من الأصل في 2011-01-05. اطلع عليه بتاريخ 2011-01-23.
  28. ^ Jason Bush (14 يوليو 2009). "Nitol, Russia's Emerging Solar Power Star". Spiegel Online International. مؤرشف من الأصل في 2011-06-29. اطلع عليه بتاريخ 2011-02-21.
  29. ^ "India, Russia exploring JV in solar photo-voltaic cells". Russia & India Report. 21 فبراير 2011. مؤرشف من الأصل في 2011-10-19. اطلع عليه بتاريخ 2011-03-06.
  30. ^ ا ب "Russia to spend $200 million on largest wind-power plant". RIA Novosti. 30 يوليو 2010. مؤرشف من الأصل في 2012-10-20. اطلع عليه بتاريخ 2011-01-23.
  31. ^ ا ب Honey Garcia (16 يوليو 2011). "Siemens makes a bid for Russia's wind power through joint venture". Ecoseed. مؤرشف من الأصل في 2011-01-11. اطلع عليه بتاريخ 2011-03-06.
  32. ^ "Russian power plants soon to utilize tidal energy". Russia InfoCentre. 24 يونيو 2005. مؤرشف من الأصل في 2018-10-25. اطلع عليه بتاريخ 2011-01-23.
  33. ^ A. M. Gorlov (2001). final.pdf "Tidal Energy" (PDF). Northeastern University. مؤرشف من الأصل (PDF) في 2017-10-31. اطلع عليه بتاريخ 2011-01-23. {{استشهاد ويب}}: تحقق من قيمة |مسار أرشيف= (مساعدة)
  34. ^ "Tidal power for northernmost Russia". Barnets Observer. 2 يونيو 2008. مؤرشف من الأصل في 2011-09-29. اطلع عليه بتاريخ 2011-01-23.
  35. ^ Usachev, I. N.; Shpolyanskiy, Y. B.; Istorik, B. L.; Kuznetsev, V. P.; Fateev, V. N.; Knyazev, V. A. (2008). https://web.archive.org/web/20110817145842/http://h2forum2008.ru/docs/pdf/abstracts/5_3_21.pdf [Tidal power plants (TPP) — a source of energy, store-able in hydrogen] (PDF). 2nd International Forum "Hydrogen technologies for developing world" Приливные электростанции (ПЭС) — источник энергии, запасаемый в водороде (بالروسية). موسكو. Archived from the original (PDF) on 2011-08-17. Retrieved 2010-12-24. {{استشهاد بمنشورات مؤتمر}}: |مسار أرشيف= بحاجة لعنوان (help)
  36. ^ ا ب "Russia Biofuels Activities". Asia-Pacific Economic Cooperation. 2008. مؤرشف من الأصل في 2013-06-11. اطلع عليه بتاريخ 2011-01-28.
  37. ^ ا ب ج "Russia's biofuel energy revolution". Modern Russia. 22 نوفمبر 2010. مؤرشف من الأصل في 2012-09-09. اطلع عليه بتاريخ 2011-01-28.
  38. ^ "First Biofuel Plant to be built in Russia". Russian Geographical Society. 19 أكتوبر 2010. مؤرشف من الأصل في 2012-03-17. اطلع عليه بتاريخ 2011-01-28.
  39. ^ "Russia's first biofuel plant". Rossiyskaya Gazeta. 6 أكتوبر 2010. مؤرشف من الأصل في 2011-03-12. اطلع عليه بتاريخ 2011-01-28.
  40. ^ "Russia wants to export biofuels and game to EU". RIA Novosti. 6 سبتمبر 2010. مؤرشف من الأصل في 2012-10-21. اطلع عليه بتاريخ 2011-01-28.
  41. ^ "Russian Biofuel Industry Set to Reign European Market". RNCOS Industry Research Solutions. 18 مايو 2009. مؤرشف من الأصل في 2009-05-30. اطلع عليه بتاريخ 2011-01-30.
  42. ^ Elena Douraeva (2003). "Opportunities for Renewable Energy in Russia" (PDF). International Energy Agency. مؤرشف من الأصل (PDF) في 2018-03-08. اطلع عليه بتاريخ 2011-01-29.
  43. ^ Timo Karjalainen, Yuri Gerasimov (سبتمبر 2008). KARJALAINEN.PDF "Energy Wood Potential in Northwest Russia" (PDF). Finnish Forest Research Institute. مؤرشف من الأصل (PDF) في 2016-03-03. اطلع عليه بتاريخ 2011-01-29. {{استشهاد ويب}}: تحقق من قيمة |مسار أرشيف= (مساعدة)
  44. ^ Elena Merle-Beral. Merle-Beral.pdf "Waking the Giant" (PDF). Our Planet. مؤرشف من الأصل (PDF) في 2017-02-02. اطلع عليه بتاريخ 2011-01-29. {{استشهاد ويب}}: تحقق من قيمة |مسار أرشيف= (مساعدة)
  45. ^ "Peat: Useful Resource or Hazard?". Russian Geographical Society. 10 أغسطس 2010. مؤرشف من الأصل في 2013-01-21. اطلع عليه بتاريخ 2011-01-29.
  46. ^ "Shatura Power Station". The Fourth Generation Company of the Wholesale Electricity Market. 2007. مؤرشف من الأصل في 2016-03-04. اطلع عليه بتاريخ 2011-01-31.
  47. ^ "Russia's peat generation". The Milwaukee Journal. 20 مارس 1959. مؤرشف من الأصل في 2019-01-21. اطلع عليه بتاريخ 2011-01-31.


Read other articles:

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Eric Adjetey Anang di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan pener...

 

Ery Mefri (lahir 23 Juni 1958) adalah seorang koreografer tari asal Indonesia. Ia merupakan pimpinan kelompok tari Nan Jombang Dance Company. Dalam berkarya, ia banyak mengolah unsur-unsur tari tradisional Minangkabau. Ery merupakan anak tunggal dari pasangan Jamin Manti Jo Sutan dan Nurjanah asal Minangkabau.[1] Ia mengawali kariernya bersama Grup Gumarang Sakti pimpinan Gusmiati Suid. Ia dikenal sebagai koreografer yang suka melakukan pencarian ekspresi baru dalam setiap karyanya. S...

 

Kloroform Nama Nama IUPAC Trikloromatana Nama lain Trikloromatana; formil triklorida; metana triklorida; metil triklorida; metenil triklorida; TCM; freon 20; refrigerant-20; R-20; UN 1888 Penanda Nomor CAS 67-66-3 Y Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} ChEBI CHEBI:35255 Y ChEMBL ChEMBL44618 Y ChemSpider 5977 Y Nomor EC KEGG C13827 Y PubChem CID 6212 Nomor RTECS {{{value}}} UNII 7V31YC746X Y CompTox Dashboard (EPA) DTXSID1020306 InChI InChI=1S/CHC...

  هذه المقالة عن بلازما (فيزياء). لمعانٍ أخرى، طالع بلازما. بلازمامعلومات عامةصنف فرعي من غازمادة مظهر لـ plasma state of matter (en) لديه جزء أو أجزاء ذرة تعديل - تعديل مصدري - تعديل ويكي بيانات جزء من سلسلة مقالات حولميكانيكا الأوساط المتصلة مقالات مفتاحية قانون حفظ المادة كمية ا�...

 

Norwegian author Ari BehnBehn in 2006BornAri Mikael Bjørshol30 September 1972Århus, DenmarkDied25 December 2019(2019-12-25) (aged 47)Lommedalen, NorwayResting placeCemetery of Our Saviour, Oslo, NorwayAlma materUniversity of OsloOccupation(s)Author, visual artistSpouse Princess Märtha Louise of Norway ​ ​(m. 2002; div. 2017)​Children Maud Angelica Behn Leah Isadora Behn Emma Tallulah Behn Ari Mikael Behn (Norwegian pronunciation: &#...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Circolo Sportivo Trevigliese. Circolo Sportivo TreviglieseStagione 1926-1927Sport calcio Squadra Trevigliese Seconda Divisione8º posto nel girone B Nord. StadioCampo C.S. Trevigliese 1925-1926 1927-1928 Si invita a seguire il modello di voce Questa pagina raccog...

American politician For other people named William Haile, see William Haile (disambiguation). William Henry Haile35th Lieutenant Governor of MassachusettsIn office1890–1893GovernorJohn Q. A. BrackettWilliam E. RussellPreceded byJohn Q. A. BrackettSucceeded byRoger WolcottMayor of Springfield, MassachusettsIn office1881–1881Preceded byLewis J. PowersSucceeded byEdwin E. LaddMember of the Massachusetts State Senatefrom the 1st Hampden DistrictIn office1882–1883Member of the New Hampsh...

 

French artist (born 1938) Jean-Paul GoudeJean-Paul Goude in 2008Born (1938-12-08) 8 December 1938 (age 85)Montreuil, FranceEducationÉcole nationale supérieure des arts décoratifsOccupationGraphic DesignerYears active1968–presentSpouseKaren Park GoudeChildren3 Jean-Paul Goude (born 8 December 1938[1]) is a French graphic designer, illustrator, photographer, advertising film director and event designer.[2] He worked as art director at Esquire magazine in New York ...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) طواف إسبانيا 2000 التاريخ 26 أغسطس - 17 سبتمبر التاريخ بداية:26 أغسطس 2000  نهاية:17 سبتمبر 2000  عدد المراحل 21 �...

جزء من سلسلة مقالات سياسة الدنماركالدنمارك الدستور الدستور حقوق الإنسان التاج الملك (الملكة مارغريت الثانية) ولي العهد (فريدريك) العائلة المالكة المجلس الخاص السلطة التنفيذية رئيس الوزراء مجلس الوزراء السلطة التشريعية البرلمان السلطة القضائية القضاء المحكمة العليا الت�...

 

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

Questa voce sugli argomenti fiction televisive antologiche e fiction televisive statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Room 104Immagine tratta dalla siglaPaeseStati Uniti d'America Anno2017-2020 Formatoserie TV Genereantologico, commedia drammatica, orrore, thriller Stagioni4 Episodi48 Durata21-29 min (episodio) Lingua originaleinglese Rapporto16:9 CreditiIdeatoreMark ...

 

Societal system of married couples residing with the wife's parents Part of a series on theAnthropology of kinship Basic concepts Family Lineage Affinity Consanguinity Marriage Incest taboo Endogamy Exogamy Moiety Monogamy Polygyny Polygamy Concubinage Polyandry Bride price Bride service Dowry Parallel / cross cousins Cousin marriage Levirate Sororate Posthumous marriage Joking relationship Clan Cohabitation Fictive / Milk / Nurture kinship Descent Cognatic /&#...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目之中立性有争议。其內容、語調可能帶有明顯的個人觀點或地方色彩。 (2015年6月22日)加上此模板的編輯者需在討論頁說明此文中立性有爭議的原因,以便讓各編輯者討論和改善。在編輯之前請務必察看讨论页。 此條目含有過多、重複或不必要的内部链接。 (2016年3月1日)請根据格式指引,移除重�...

Measure of ionization of air by ionizing radiation For other uses, see Radiation exposure (disambiguation). Types of electromagnetic radiation Radiation exposure is a measure of the ionization of air due to ionizing radiation from photons.[1] It is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air.[1] As of 2007, medical radiation exposure was defined by the International Commission on Radiological Protection as...

 

此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2020年3月17日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目需要补充更多来源。 (2020年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:勞馬宣言 — 网页、新闻、书籍、学术、图像),�...

 

Europeesche Lagere School (bahasa Indonesia: Sekolah Dasar Eropa) atau disingkat ELS merupakan Sekolah Dasar zaman kolonial Hindia Belanda di Indonesia. ELS menggunakan Bahasa Belanda yang menjadi bahasa wajib dalam proses belajar mengajarnya. ELS diperuntukkan untuk keturunan Eropa, keturunan timur asing atau pribumi dari tokoh terkemuka. ELS pertama didirikan pada tahun 1817 dengan masa sekolah 7 tahun. Awalnya hanya terbuka bagi warga Belanda di Hindia Belanda, sejak tahun 1903 kesempa...

Approach to psychology Front row: Sigmund Freud, G. Stanley Hall, Carl Jung; Back row: Abraham A. Brill, Ernest Jones, Sándor Ferenczi, at: Clark University in Worcester, Massachusetts. Date: September 1909. Psychodynamics, also known as psychodynamic psychology, in its broadest sense, is an approach to psychology that emphasizes systematic study of the psychological forces underlying human behavior, feelings, and emotions and how they might relate to early experience. It is especially inter...

 

Business conglomerate based in Uganda Aya GroupIndustryInvestments, Transportation, Food ProcessingHeadquartersKampala, UgandaKey peopleMohammed HamidGroup Chairman & Managing DirectorProductsWheat, Bread, Flour, Construction, Hotels & ResortsTotal assetsUS$400+ million (2012)Number of employees5,000+ (2011) The Aya Group of Companies, commonly referred to as the Aya Group, is a business conglomerate based in Uganda. Location With headquarters at 62 Bombo Road, Kawempe, in northern Ka...