Scheeliet is genoem na die Sweede chemikus Carl Wilhelm Scheele (1742-1786) wat ook die element wolfram hieruit vrygestel het.
Dit kom in hornfels in kontak met metamorfe gesteentes, in graniet-pegmatiete en in epitermiese are voor. Dit vorm 'n oplossingsreeks met powelliet (CaMoO4).[2]
Kristalstruktuur
Scheeliet se tetragonale struktuur is die argetipe van die strukturbericht-klassifikasie se H4-struktuur.[3]In hierdie struktuur het die wolframatoom ongeveer 'n tetraëdriese koördinasie deur suurstof en hierdie WO4-tetraëder vorm 'n wolframaatioon. Die kalsiumatome het 'n agtvoudige koördinasie en is omring deur 'n vervormde vierkante antiprisma van suurstofatome. Die wolframaatione deel net hoekpunte met die CaO8-antiprisma's. Die antiprima's deel rande met mekaar en vorm ovale ringe met ses lede rondom die wolframaatione.[4] Daar is talle wolframate en ander verbindings wat die scheeliet-tipe struktuur het.
Fase-oorgang
Sintetiese enkelkristalle van scheeliet kan m.b.v. die Czochralski-metode vervaardig word. Navorsing aan sintetiese scheeliet by hoë druk het uitgewys dat by 'n druk van 11,3 GPa 'n fase-oorgang plaasvind na die fergusoniet-struktuur wat van die tweede orde en daarmee volledig omkeerbaar is. Die nuwe struktuur het 'n laer monokliene struktuur. Die wolframaat-tetraëders vervorm effens, maar die groot verandering is in die kalsium-omringing. Twee van die agt suurstofatome verkry 'n baie groter afstand tot die kalsiumatoom en die omringing word effektief sesvoudig pleks van agtvoudig. Die vervorming vind vanweë die twee orde-aard van die oorgang geleidelik plaas. Sintetiese SrWO4-kristalle wat ook die H4-struktuur het, ondergaan dieselfde oorgang by 'n effens laer druk van 10,1 GPa.[5]