Young Money Entertainment
|
Read other articles:
GavialidaeRentang fosil: Eosen, 38–0 jtyl PreЄ Є O S D C P T J K Pg N Gavialis gangeticus Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Reptilia Ordo: Crocodilia Superfamili: Gavialoidea Famili: GavialidaeAdams, 1854 Subfamili & Genus Lihat teks Gavialidae adalah keluarga Crocodilia semi-akuatik besar dengan moncong sempit dan memanjang. Gavialidae terdiri dari dua spesies hidup yakni Gavial (Gavialis gangeticus) dan buaya sepit (Tomistoma schleg...
Front Revolusi untuk Kemerdekaan Timor Leste Frente Revolucionária de Timor-Leste IndependenteSingkatanFretilin, FRETILINPresidenFrancisco Lu Olo GuterresSekretaris JenderalMari AlkatiriDibentuk20 Mei 1974 (1974-05-20) (ASDT) 11 September 1974 (Fretilin)Kantor pusatAvenida Martires da Patria, Comoro, Dili, Timor LesteSayap pemudaOrganisasi Pemuda dan Pelajar Timor LesteSayap paramiliterFALINTIL (1975–2001)(2001–) sebagai angkatan bersenjata Timor TimurIdeologiSosialisme demokratisDe...
Charles G. Dawes Wakil Presiden Amerika Serikat 30Masa jabatan4 Maret 1925 – 4 Maret 1929PresidenCalvin Coolidge PendahuluCalvin CoolidgePenggantiCharles Curtis Informasi pribadiLahir27 Maret 1865Marietta, Washington County, OhioMeninggal23 April 1951 (umur 86)Evanston, IllinoisKebangsaanAmerikaPartai politikPartai RepublikanSuami/istriCaro Blymyer DawesSunting kotak info • L • B Charles Gates Dawes lahir di Marietta, Washington County, Ohio, pada 27 Maret 1865. i...
منير الزعبي قائد الحرس الرئاسي الفلسطيني في المنصب23 مارس 2006 – حتى الآن معلومات شخصية اسم الولادة منير عايد سالم الزعبي الميلاد 24 نوفمبر 1957 (67 سنة) الإقامة البيرة مواطنة دولة فلسطين عضو في حركة فتح، والمجلس الثوري لحركة فتح، وجامعة الاستقلال الحياة ا...
Buffer state between medieval Italy and France from the 9th–11th centuries This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: March of Ivrea – news · newspapers · books · scholar · JSTOR (December 2015) The March of Ivrea was a large frontier county (march) in the northwest of the medieval Italian k...
Township in Petaling, Selangor, Malaysia This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Bandar Utama – news · newspapers · books · scholar · JST...
Shalishan language This article should specify the language of its non-English content, using {{lang}}, {{transliteration}} for transliterated languages, and {{IPA}} for phonetic transcriptions, with an appropriate ISO 639 code. Wikipedia's multilingual support templates may also be used - notably hur for Halkomelem. See why. (May 2019) Hul'qumi'num'Halq̓eméylem / Hul̓q̓umín̓um̓ / hən̓q̓əmin̓əm̓Native toCanada...
此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...
此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...
Bilateral relationsSamoa-Turkey relations Samoa Turkey Samoa–Turkey relations are foreign relations between Samoa and Turkey. The Turkish ambassador in Wellington, New Zealand is accredited to Samoa since April 12, 1979.[1] Diplomatic Relations Turkey and Samoa have friendly relations. Through TIKA, Turkey[1] cooperates[2] with the European Investment Bank and JICA on the development of school buildings,[3] district hospitals[4] and reductions of the ...
Palestinian news website The Palestinian Information Center (PIC)Type of siteNewsAvailable in9 different languagesURLenglish.palinfo.comCommercialNoLaunched1 January 1998Current statusactive The Palestinian Information Center (PIC) (Arabic: المركز الفلسطيني للإعلام) is a Palestinian news website and network that was established first in Arabic on 1 December 1997 and later in English on 1 January 1998. History The Palestinian Information Center is a Palestinian ...
Questa voce sull'argomento atleti francesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Ethan Cormont Nazionalità Francia Altezza 178 cm Peso 63 kg Atletica leggera Specialità Salto con l'asta Società ASA Maisons-Alfort Record Asta 5,80 m (2021) Asta 5,82 m (indoor - 2023) CarrieraSocietà 2010- ASA Maisons-AlfortNazionale 2021- Francia1Palmarès Competizione Ori Argenti Bronzi Europei U23 ...
Neckarwestheim Lambang kebesaranLetak Neckarwestheim di Heilbronn NegaraJermanNegara bagianBaden-WürttembergWilayahStuttgartKreisHeilbronnPemerintahan • MayorMario DürrLuas • Total13,97 km2 (539 sq mi)Ketinggian254 m (833 ft)Populasi (2021-12-31)[1] • Total4.091 • Kepadatan2,9/km2 (7,6/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos74382Kode area telepon07133Pelat kendaraanHNSitus webwww.neckarwestheim.d...
Circus performer For other uses, see Ringmaster (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ringmaster circus – news · newspapers · books...
The building of Cheltenham Library which adjoins Cheltenham Art Gallery & Museum Gerrit Dou, Selfportrait, 1635–8 The Wilson, formerly known as Cheltenham Art Gallery and Museum, in Cheltenham, Gloucestershire, was opened in 1899. It offers free admission, and has a programme of special exhibitions. It was renamed The Wilson in honour of polar explorer Edward Wilson, a son of Cheltenham, in 2013 after the building was extended. The gallery and museum is managed by The Cheltenham Trust....
Six stacked horizontal lines used in Chinese divination The hexagrams of the I Ching in a diagram belonging to the German mathematician philosopher Gottfried Wilhelm Leibniz[1] The I Ching book consists of 64 hexagrams.[2] [3] A hexagram in this context is a figure composed of six stacked horizontal lines (爻 yáo), where each line is either Yang (an unbroken, or solid line), or Yin (broken, an open line with a gap in the center). The hexagram lines are traditionally ...
حصار فورت جوليان جزء من الحملة الفرنسية على مصر معلومات عامة التاريخ 8 إبريل 1801 البلد الدولة العثمانية الموقع رشيد، مصر31°27′29″N 30°22′34″E / 31.458051°N 30.376188°E / 31.458051; 30.376188 النتيجة انتصار القوات العثمانية والإنجليزية المتحاربون الدولة العثمانية فر...
Waterfall in Vatnsnes, IcelandHvítserkurHvítserkur at full seaLocationVatnsnes, Iceland 65°36′23″N 20°38′08″W / 65.60648°N 20.63563°W / 65.60648; -20.63563 Hvítserkur (Icelandic pronunciation: [ˈkʰvitˌsɛr̥kʏr̥], regionally also [-ˌsɛrkʰʏr̥]) is a 15 m high basalt stack along the eastern shore of the Vatnsnes peninsula, in northwest Iceland.[1] The rock has two holes at the base, which give it the appearance of a d...
«Sueño de Escipión» redirige aquí. Para la obra pictórica de Rafael, véase El sueño del caballero. «Sueño de Escipión» redirige aquí. Para la ópera de Mozart basada en un texto de Metastasio, véase Il sogno di Scipione. El universo con la Tierra en el centro. Comentario al Sueño de Escipión de Macrobio (en latín Commentarii in Somnium Scipionis) es un estudio prolijo del famoso sueño narrado en Sobre la república de Cicerón (VI 9-29), en el que Escipión el Africano el Vi...
On the sum of the distances from an interior point to the sides of an equilateral triangle For any interior point P, the sum of the lengths of the perpendiculars s + t + u equals the height of the equilateral triangle. Viviani's theorem, named after Vincenzo Viviani, states that the sum of the shortest distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude.[1] It is a theorem commonly employed in various math competitions...