Thavil |
Read other articles:
Hinds pada 2020 Damian Patrick George Hinds (lahir 27 November 1969)[1] adalah seorang politikus Partai Konservatif Britania Raya. Ia menjabat sebagai Menteri Pendidikan dari 2018 sampai 2019. Referensi ^ No. 59418. The London Gazette. 13 May 2010. hlm. 8742. Pranala luar Profil di Parlemen Britania Raya Kontribusi di Parlemen di Hansard Catatan suara di Public Whip Catatan di Parlemen di TheyWorkForYou Conservative Home — Damian Hinds's selection Petersfield Post — Dam...
جنوب شرق أوروبامعلومات عامةجزء من أوروبا تقع في منطقة تضاريس أوروبا الإحداثيات 44°20′00″N 23°49′00″E / 44.3333°N 23.8167°E / 44.3333; 23.8167 لديه جزء أو أجزاء مقدونيا الشماليةاليونان تعديل - تعديل مصدري - تعديل ويكي بيانات المعالم الجغرافية جنوب شرق أوروبا هي منطقة سياسية وجغراف...
Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...
1964–65 in Scottish footballDivision One championsKilmarnockDivision Two championsStirling AlbionScottish Cup winnersCelticLeague Cup winnersRangersJunior Cup winnersLinlithgow RoseTeams in EuropeCeltic, Dundee, Dunfermline Athletic, Kilmarnock, RangersScotland national team1965 BHC, 1966 World Cup qualification The 1964–65 season was the 92nd season of competitive football in Scotland and the 68th season of Scottish league football.[1] Scottish League Division One Main article: ...
19th-century British diplomatic practice For the album, see Splendid Isolation (album). For the song by Warren Zevon, see Transverse City. For the novel by Edna O'Brien, see House of Splendid Isolation. Splendid isolation is a term used to describe the 19th-century British diplomatic practice of avoiding permanent alliances, particularly under the governments of Lord Salisbury between 1885 and 1902. The concept developed as early as 1822, when Britain left the post-1815 Concert of Europe, and...
Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...
Football clubAtlético GrauFull nameClub Social Deportivo Atlético GrauNickname(s)Los AlbosLos BlancosLos HeroicosLos AcadémicosFoundedJune 5, 1919; 104 years ago (1919-06-05)GroundEstadio Miguel GrauPiuraCapacity25,500ChairmanArturo Ríos IbáñezManagerÁngel ComizzoLeagueLiga 12023Liga 1, 12th of 19WebsiteClub website Home colours Away colours Third colours Club Atlético Grau, more commonly known as Atlético Grau or simply, Grau, is a Peruvian professional football cl...
Seal family which includes the walrus OdobenidaeTemporal range: Middle Miocene to present Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Clade: Pinnipedia Superfamily: Otarioidea Family: OdobenidaeAllen, 1880 Genera Odobenus (walrus) (see text for more) Odobenidae is a family of pinnipeds, of which the only extant species is the walrus (Odobenus rosmarus). In the past, however, the group was much more diverse, and includes more ...
Brachyleptura Brachyleptura rubrica Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Brachyleptura Brachyleptura adalah genus kumbang tanduk panjang yang tergolong famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau kayu yang tel...
Filmmaking in Cuba Cinema of CubaCine Praga in Pinar del Rio, CubaNo. of screens313 (2009)[1] • Per capita3.0 per 100,000 (2009)[1]Main distributorsDist. Nac. ICAIC 100.0%[2]Produced feature films (2009)[3]Fictional8Number of admissions (2011)[4]Total2,230,200Gross box office (2006)[4]TotalCUP 2.45 millionNational filmsCUP 1.36 million (55.7%) Cinema arrived in Cuba at the beginning of the 20th century. Befor...
土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...
Russian linguist Roman JakobsonРоман ЯкобсонBornRoman Osipovich Jakobson11 October [O.S. 29 September] 1896Moscow, Russian EmpireDied18 July 1982(1982-07-18) (aged 85)Cambridge, Massachusetts, U.S.Alma materLazarev Institute of Oriental LanguagesMoscow UniversitySpouse(s)Svatava Pirkova, Krystyna PomorskaSchoolMoscow linguistic circlePrague linguistic circleMain interestsLinguisticsNotable ideasJakobson's functions of languageMarkedness Semiotics ...
State highway in northern New Jersey, US NJ 7 redirects here. The term may also refer to New Jersey's 7th congressional district. This article is about the current New Jersey Route 7. For the Route 7 that existed before 1927, see New Jersey Route 7 (pre-1927). Route 7Two segments of Route 7 highlighted in redRoute informationMaintained by NJDOT, Township of Nutley, and Passaic CountyLength9.46 mi[1] (15.22 km)Existed1927–presentSouthern sectionLength5.35 mi[1...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
Osami NaganoOsami Nagano mengenakan seragam Wakil LaksamanaNama asli永野 修身Lahir(1880-06-15)15 Juni 1880Kōchi, Prefektur Kōchi, JepangMeninggal5 Januari 1947(1947-01-05) (umur 66)[1]Tokyo, JepangPengabdianKekaisaran JepangDinas/cabangAngkatan Laut Kekaisaran JepangLama dinas1900 -1947PangkatMarsekal Laksamana Laksamana Armada Staf Jenderal Komandan Hirado Divisi Intelijensi NGS ke-3, Divisi Pertempuran ke-3, Armada Ekspedisi Tiongkok ke-1, Staf Jenderal Angkatan Laut...
Il Congresso Bourbaki del 1938. Da sin. a destra: Simone Weil, Charles Pisot, André Weil, Jean Dieudonné, Claude Chabauty, Charles Ehresmann, Jean Delsarte Nicolas Bourbaki è l'eteronimo con cui, a partire dal 1935 e sostanzialmente fino al 1983, un gruppo di matematici di alto profilo, in maggioranza francesi, scrisse una serie di libri per l'esposizione sistematica di nozioni della matematica moderna avanzata. Con questa operazione scientifica il gruppo aveva l'obiettivo di fondare l'int...
Epiphany carol Not to be confused with The Three Kings. For other uses, see We Three Kings (disambiguation). Three Kings of OrientThe Adoration of the Magi by Bartolomé Esteban Murillo, about 1655–1660. Toledo Museum of Art, Toledo, Ohio.GenreChristmas carolWritten1857TextJohn Henry Hopkins Jr.Based onMatthew 2:1Meter8.8.4.4.6 with refrainMelodyThree Kings of Orient by John Henry Hopkins Jr.Published1863 We Three Kings, original title Three Kings of Orient, also known as We Three K...
2010 2018 Élection du gouverneur de l'Illinois de 2014 4 novembre 2014 Bruce Rauner[1] – R Voix 1 823 627 50,27 % Pat Quinn[2] – D Voix 1 681 343 46,35 % Résultats par comtés Gouverneur de l'Illinois Élu Bruce Rauner modifier - modifier le code - voir Wikidata L’élection du gouverneur et de son adjoint a lieu le 4 novembre 2014 dans l'Illinois. Primaire démocrate Le 18 mars 2014, les démocrates désignent leurs candid...
Clade of non-flowering, naked-seeded vascular plants Not to be confused with the flowering plant genera Gymnosperma and Gymnospermium. GymnospermTemporal range: Carboniferous–Present PreꞒ Ꞓ O S D C P T J K Pg N Various gymnosperms. Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Spermatophytes Clade: Gymnospermae Living orders[1] Cycadopsida Cycadales Ginkgoopsida Ginkgoales Pinopsida Cupressidae Araucariales Cupressales Pinidae Pinales Gnetidae Ephedrales...
Area of mathematics; subarea of calculus The graph of a function, drawn in black, and a tangent line to that function, drawn in red. The slope of the tangent line equals the derivative of the function at the marked point. Part of a series of articles aboutCalculus ∫ a b f ′ ( t ) d t = f ( b ) − f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)} Fundamental theorem Limits Continuity Rolle's theorem Mean value theorem Inverse function theorem Differential Definitions...