Teori kekacauan

Ikon teori chaos adalah penarik Lorenz.

Teori kekacauan, dalam matematika dan fisika, berhadapan dengan sifat dari sistem dinamika taklinear tertentu yang (dalam kondisi tertentu) menunjukkan fenomena yang dikenal sebagai kekacauan, terkenal dengan sifat sensitivitas pada kondisi awal (lihat efek kupu-kupu). Contoh sistem ini adalah atmosfer, tata surya, lempeng tektonik, turbulensi fluida, ekonomi, dan pertumbuhan populasi.[1]

Sistem yang menunjukan kekacauan matematika adalah deterministik dan berurutan dalam arti tertentu; teknik yang menggunakan kata kekacauan yang terdapat keanehan dengan bahasa umumnya, mengusulkan ketiadaan pengurutan keseluruhan. Ketika kita mengatakan teori kekacauan mempelajari sistem deterministik, perlu disebut bidang fisika yang berhubungan disebut teori kekacauan kuantum yang mempelajari sistem takdeterministik mengikuti hukum mekanika kuantum.

Di dalam matematika dan fisika, dinamika nonlinier atau teori chaos mendeskripsikan perilaku sistem dinamika nonlinier tertentu yang mungkin menunjukkan dinamika yang sangat sensitif terhadap kondisi awal (secara populer dirujuk sebagai efek kupu-kupu).

Sebagai hasil dari sensitivitas ini, yang mewujudkan diri sebagai pertumbuhan eksponensial usikan (perturbasi) di kondisi awal, perilaku sistem chaotic muncul secara acak (random).

Hal ini terjadi meskipun sistem ini adalah sistem deterministik, yang bermakna bahwa dinamika masa depan secara penuh ditentukan oleh kondisi awal, tanpa elemen acak yang terlibat. Perilaku ini dikenal sebagai chaos deterministik, atau sederhananya chaos.

Lihat pula

Referensi

  1. ^ "What is Chaos Theory? – Fractal Foundation" (dalam bahasa Inggris). Diakses tanggal 2023-05-16. 

Buku teks dan kerja teknik

Tinjauan

Perilaku chaotic telah diamati di laboratorium dalam berbagai sistem mencangkup rangkaian listrik, laser, reaksi kimia berosilasi, dinamika fluida, dan perangkat magneto-mekanis dan mekanis.

Pengamatan perilaku chaotic di alam mencangkup dinamika satelit dalam sistem tata surya, evolusi waktu medan magnetik benda langit, dinamika populasi dalam ekologi, dinamika potensial aksi di neuron, dan vibrasi molekuler.

Contoh tiap hari sistem chaotic mencangkup iklim dan cuaca meteorologi.

Semiteknik dan kerja populer

  • The Beauty of Fractals, by H.-O. Peitgen and P.H. Richter
  • Chance and Chaos, by David Ruelle
  • Computers, Pattern, Chaos, and Beauty, by Clifford A. Pickover
  • Fractals, by Hans Lauwerier
  • Fractals Everywhere, by Michael Barnsley
  • Order Out of Chaos, by Ilya Prigogine and Isabelle Stengers
  • Chaos and Life, by Richard J Bird
  • Does God Play Dice?, by Ian Stewart
  • The Science of Fractal Images, by Heinz-Otto Peitgen and Dietmar Saupe, Eds.
  • Explaining Chaos, by Peter Smith
  • Chaos, by James Gleick
  • Complexity, by M. Mitchell Waldrop
  • Chaos, Fractals and Self-organisation, by Arvind Kumar
  • Chaotic Evolution and Strange Attractors, by David Ruelle

Pranala luar

Read other articles:

Messier 32Galaksi elips kerdil M32Data pengamatan (J2000 epos)Rasi bintangAndromedaAsensio rekta 00j 42m 41.8d[1]Deklinasi +40° 51′ 55″[1]Pergeseran merah-200 ± 6 km/s[1]Jarak2,49 ± 0,08 Mtc (763 ± 24 kpc)[2][3][4][a]Magnitudo semu (V)8,08[5][6]Ciri-ciriJeniscE2[1]Ukuran semu (V)8',7 × 6',5[1]Ciri-ciri pentingGalaksi satelit dari Galaksi AndromedaPenamaan lainM 32NG...

 

 

American animated science fiction television series from 1973 to 1974 This article is about the 1970s animated cartoon TV show. For other animated Star Trek series, see List of Star Trek television series. Star Trek: The Animated SeriesGenre Animation Adventure Science fiction Created byGene RoddenberryDirected by Hal Sutherland (season 1) Bill Reed (season 2) Voices of William Shatner Leonard Nimoy DeForest Kelley James Doohan Nichelle Nichols George Takei Majel Barrett Composers Yvette Blai...

 

 

Ini adalah nama Korea; marganya adalah Lee. SandeulSandeul di Yongsan I-Park Mall pada bulan November 2013.Informasi latar belakangNama lahirLee Jung-hwanLahir20 Maret 1992 (umur 32)Busan, Korea SelatanAsalSeoul, Korea SelatanGenreK-popPekerjaanPenyanyi, AktorInstrumenVokalTahun aktif2011–sekarangLabelWM EntertainmentArtis terkaitB1A4Situs webb1a4.com Sandeul di Twitter Nama KoreaHangul이정환 Hanja李征桓 Alih AksaraI Jeong-hwanMcCune–ReischauerI Chŏng-hwan Lee Jung-hwan (Hangu...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أغسطس 2019) كأس ديفيز 1964 تفاصيل الموسم كأس ديفيز  النسخة 53  البطل منتخب أستراليا لكأس �...

 

 

Open di Zurigo 1998 Sport Tennis Data 12 ottobre – 18 ottobre Edizione 15a Superficie Cemento indoor Campioni Singolare Lindsay Davenport Doppio Serena Williams / Venus Williams 1997 1999 L'Open di Zurigo 1998 è stato un torneo femminile di tennis giocato sul cemento indoor. È stata la 15ª edizione del torneo, che fa parte della categoria Tier I nell'ambito del WTA Tour 1998. Si è giocato nell'Hallenstadion di Zurigo in Svizzera, dal 12 al 18 ottobre 1998. Indice 1 Campionesse 1.1 Sing...

 

 

Akhmad Yani Renuat Akhmad Yani Renuat (lahir 10 Oktober 1967) adalah seorang birokrat Indonesia kelahiran Kabupaten Maluku Tenggara. Ia menempuh pendidikan di SD Negeri Dullah/Ngadi, SMP Negeri 1 Tual, SMA Negeri 1 Tual, STIA Trinitas Ambon, Universitas Gadjah Mada dan Universitas Pattimura Ambon. Ia sempat menjabat selaku Sekretaris Daerah Kota Tual. Pada 2023, ia diangkat menjadi pelaksana jabatan Wali Kota Tual.[1] Referensi ^ Renuat Layak Jadi Pj Wali Kota Tual, Simak Rekam Jejakn...

Sway Tipemanajer jendela menyusun, Wayland compositor dan perangkat lunak bebas Berdasarkai3 Versi pertama24 Maret 2016; 8 tahun lalu (2016-03-24)[1]Versi stabil 1.9 (24 Februari 2024) GenreManajer jendelaLisensiLisensi MITKarakteristik teknisSistem operasiGNU/Linux, BSD dan mirip Unix Ukuran5.3 MiBBahasa pemrogramanC Informasi pengembangPembuatDrew DeVault (SirCmpwn)ProgrammerDrew DeVault Sumber kode Kode sumberPranala Arch Linuxsway Ubuntusway Gentoogui-wm/sway Fedorasway Infor...

 

 

Japanese reality television series Terrace House: Tokyo 2019–2020The initial cast of Terrace House: Tokyo 2019–2020.GenreRealityPresented byYou, Reina Triendl, Yoshimi Tokui, Azusa Babazono, Ryota Yamasato, Shono HayamaOpening themeJapan: Graves by ChvrchesInternational: Divers in a Hurricane by EleventysevenEnding themeJapan: Chasing Cars by Snow Patrol International: No Guarantees by Sammy IsaacCountry of originJapanOriginal languageJapaneseProductionProduction locationJapanOriginal rel...

 

 

  关于与「內閣總理大臣」標題相近或相同的条目页,請見「內閣總理大臣 (消歧義)」。 日本國內閣總理大臣內閣總理大臣紋章現任岸田文雄自2021年10月4日在任尊称總理、總理大臣、首相、阁下官邸總理大臣官邸提名者國會全體議員選出任命者天皇任期四年,無連任限制[註 1]設立法源日本國憲法先前职位太政大臣(太政官)首任伊藤博文设立1885年12月22日,...

Hypothetical wise ruler described by Plato For other uses, see Philosopher King (disambiguation). Part of a series onPlatonism Life Works Theory of forms Form of the Good Theory of soul Epistemology Political philosophy Euthyphro dilemma Demiurge Atlantis The Republic Allegory of the cave Analogy of the Sun Analogy of the divided line Philosopher king Ship of State Ring of Gyges Myth of Er The works of Plato Euthyphro Apology Crito Phaedo Cratylus Theaetetus Sophist Statesman Parmenides Phile...

 

 

Roman road in EnglandFor the ancient trackway and Roman road from Wiltshire to Norfolk, see Icknield Way. Icknield Street: a section preserved in Sutton Park Icknield Street or Ryknild Street is a Roman road in England, with a route roughly south-west to north-east. It runs from the Fosse Way at Bourton on the Water in Gloucestershire (51°53′17″N 1°46′01″W / 51.888°N 1.767°W / 51.888; -1.767) to Templeborough in South Yorkshire (53°25′05″N 1°23′38�...

 

 

Anthony Le Tallec Informasi pribadiNama lengkap Anthony Le TallecTanggal lahir 3 Oktober 1984 (umur 39)Tempat lahir Balikpapan, IndonesiaTinggi 1,84 m (6 ft 1⁄2 in)Posisi bermain PenyerangInformasi klubKlub saat ini ValenciennesNomor 19Karier junior1999–2001 Le HavreKarier senior*Tahun Tim Tampil (Gol)2001–2008 Liverpool 17 (0)2001–2003 → Le Havre (pinjaman) 54 (7)2005 → Saint-Étienne (pinjaman) 7 (1)2005–2006 → Sunderland (pinjaman) 27 (4)2006–2007...

Association football tournament in Gibraltar Football tournamentRock CupFounded1895RegionGibraltarNumber of teams12 (2022–23)Qualifier forUEFA Europa Conference LeagueCurrent championsLincoln Red Imps (20th title)Most successful club(s)Lincoln Red Imps (20 titles) 2023–24 Rock Cup The Rock Cup is Gibraltar's premier cup football competition, and is organized annually by the Gibraltar Football Association (GFA). From 1894/95 Gibraltar's Cup Competition was known as The Senior Merchant's Cu...

 

 

Voce principale: Ligat ha'Al. La pagina elenca l'albo d'oro dei vincitori e, ove disponibili, i secondi e i terzi classificati, nonché i capocannonieri delle singole stagioni della prima divisione del campionato israeliano di calcio dal 1931 a oggi. Indice 1 Albo d'oro 1.1 Mandato britannico della Palestina 1.1.1 Campionato di calcio della Palestina/Eretz Israele 1.2 Israele 1.2.1 Campionato d'Israele 1.2.2 Liga Alef 1.2.3 Liga Leumit 1.2.4 Ligat ha'Al 2 Classifica delle vittorie 2.1 Per sq...

 

 

2012 film by Trivikram Srinivas JulayiTheatrical release posterDirected byTrivikram SrinivasWritten byTrivikram SrinivasProduced byS. Radha KrishnaD. V. V. Danayya (presenter)StarringAllu Arjun Ileana D'CruzSonu SoodCinematographyChota K. Naidu Shyam K. NaiduEdited byPrawin PudiMusic byDevi Sri PrasadProductioncompanyHaarika & Hassine CreationsDistributed bySiri MediaFicus IncRelease date 9 August 2012 (2012-08-09) Running time152 minutesCountryIndiaLanguageTelugu Julayi (t...

Season of television series Season of television series Spy × FamilySeason 1Japanese cover art for the first home media volume of the season, featuring Loid Forger / TwilightNo. of episodes25ReleaseOriginal networkTV TokyoOriginal releaseApril 9 (2022-04-09) –December 24, 2022 (2022-12-24)Season chronologyNext →Season 2List of episodes The first season of the Spy × Family anime television series was produced by Wit Studio and CloverWorks. The series is directed by Ka...

 

 

American baseball player (1866–1903) Baseball player Pete ConwayPitcherBorn: (1866-10-30)October 30, 1866Burmont, Lansdowne, Pennsylvania, U.S.Died: January 13, 1903(1903-01-13) (aged 36)Clifton Heights, Pennsylvania, U.S.Batted: RightThrew: RightMLB debutAugust 10, 1885, for the Buffalo BisonsLast MLB appearanceMay 9, 1889, for the Pittsburgh AlleghenysMLB statisticsWin–loss record61–61Earned run average3.59Strikeouts428 Teams Buffalo Bisons (1885) Ka...

 

 

Historical religious group of French Protestants For other uses, see Huguenot (disambiguation). Part of a series onReformed ChristianityReformation Wall in Geneva, featuring prominent Reformed theologians William Farel, John Calvin, Theodore Beza, and John Knox Background Christianity Reformation Protestantism Theology Theology of John Calvin Covenant theology Republication of the Covenant of Works Baptist Covenant Theology Logical order of God's decrees Baptism Lord's Supper Regulative princ...

Carolina Augusta, Kaiserin von Österreich, Lithographie von Josef Kriehuber nach einem Gemälde von Franz Schrotzberg Prinzessin Karoline Charlotte Auguste von Bayern Karoline Charlotte Auguste von Bayern (* 8. Februar 1792 in Mannheim; † 9. Februar 1873 in Wien) war die Tochter von König Maximilian I. Joseph von Bayern und seiner Gattin Auguste Wilhelmine von Hessen-Darmstadt und durch ihre beiden Eheschließungen erst Kronprinzessin von Württemberg und schließlich Kaiserin von Österr...

 

 

Main engagement of the Third Punic War This article is about the siege and subsequent destruction of Carthage by the Romans in the 2nd century BC. For other sieges, see Battle of Carthage. Siege of CarthagePart of the Third Punic WarCatapulta by Edward Poynter. Roman siege engine in action during the siege of Carthage in the Third Punic War.Datec. 149 – spring 146 BCLocationCarthage (near Tunis)Result Roman-Numidian victory Destruction of CarthageBelligerents Roman Republic CarthageCom...