Oleg Khlevniuk

Oleg Khlevniuk

Oleg Vitalyevich Khlevniuk (bahasa Rusia: Олег Витальевич Хлевнюк, lahir 7 Juli 1959) adalah seorang sejarawan dan peneliti senior di Arsip Negeri Federasi Rusia di Moskwa.[1] Kebanyakan tulisannya tentang Uni Soviet Stalinis berdasarkan pada dokumen-dokumen arsip yang baru dirilis, termasuk korespondensi pribadi, rancangan kertas kerja Komite Pusat, memoir baru, dan wawancara dengan para bekas fungsioner dan keluarga anggota Politbiro. Gleb Pavlovsky telah mengkarakterisasikannya sebagai "sejarawan Rusia utama dari Stalinisme" [2] Ia juga merupakan anggota koresponden dari Royal Historical Society.

Karya

Publikasi:

  • The History of the Gulag [3] aslinya diterbitkan dalam bahasa Rusia.
  • Cold Peace: Stalin And The Soviet Ruling Circle, 1945-1953 [4]
  • The role of Gosplan in economic decision-making in the 1930s
  • In Stalin's shadow: the career of "Sergo" Ordzhonikidze
  • Stalin: new biography of a dictator [5]

Penghargaan

Khlevniuk meraih Penghargaan Alexander Nove (dengan Yoram Gorlizki) dari British Association for Slavonic and East European Studies 2004 untuk buku Cold Peace: Stalin and the Soviet Ruling Circle, 1945-1953.[1]

Referensi

Read other articles:

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Sarawak di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan art...

 

Gallopheasants Lophura Lophura swinhoii - Swinhoe pheasantTaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoGalliformesFamiliPhasianidaeGenusLophura Fleming bis, 1822 lbs Lophura adalah genus unggas dari famili phasianidae.[1] Burung dari genus ini dikenal dengan nama sempidan di Indonesia. Image Name Common name Distribution Lophura edwardsi Sempidan Edwards Vietnam Lophura swinhoii Sempidan Swinhoe Taiwan. Lophura bulweri Sempidan kalimantan Kalimantan Lophura leucomelanos Sempidan...

 

Indonesianis merujuk kepada tokoh-tokoh yang umumnya berkewarganegaraan asing, tetapi memiliki ketertarikan secara umum terhadap Indonesia atau melakukan kegiatan penelitian mengenai kebudayaan, politik dan kehidupan sosial di Indonesia. Beberapa Indonesianis antara lain: Nama Kewarganegaraan Anthony Reid Benedict Anderson Berthold Damshäuser Daniel S. Lev Dave McRae[1] Gerrit Jan Held George McTurnan Kahin Greg Acciaioli[2] Harold Crouch Henk Schulte Nordholt[3] Herb...

Horse breed A Fell Pony, one of the mountain and moorland pony breeds Mountain and moorland ponies form a group of several breeds of ponies and small horses native to the British Isles. Many of these breeds are derived from semi-feral ponies kept on moorland or heathland, and some of them still live in this way, as well as being kept as fully domesticated horses for riding, driving, and other draught work, or for horse showing. Mountain and moorland classes at horse shows in the British Isles...

 

Leadership position in a state government of the United States This article is part of a series on theState governments of the United States State constitution Comparison Statehouse Executive State executives Governor (List) Other common officials: Attorney general Auditor/Comptroller Lieutenant governor Secretary of state Treasurer Agriculture commissioner List of statewide elected officials Legislative State representatives (Alabama to Missouri, Montana to Wyoming) State senators List of le...

 

Aleksandr Vasilyevich FedotovLahir(1932-06-23)23 Juni 1932Stalingrad, Uni Soviet (sekarang Rusia)Meninggal4 April 1984(1984-04-04) (umur 51)Kawasan Moskwa, USSRPangkat Mayjen PenerbanganPenghargaanPahlawan Uni SovietPenghargaan Lenin Alexander Vasilyevich Fedotov (23 Juni 1932 – 4 April 1984) adalah seorang pilot uji coba Uni Soviet. Ia meraih gelar Pahlawan Uni Soviet.[1] Referensi ^ Герои Страны Pengawasan otoritas Umum ISNI 1 VIAF 1 WorldCat Perpusta...

Stadion Q2McKalla PlaceAustin FC vs. Columbus Crew Juni 2021Nama lengkapQ2 Stadium at McKalla PlaceNama lamaAustin FC Stadium (perencanaan/Konstruksi)Alamat10414 McKalla PlaceAustin, TX 78758Koordinat30°23′18″N 97°43′11″W / 30.388206°N 97.719837°W / 30.388206; -97.719837Koordinat: 30°23′18″N 97°43′11″W / 30.388206°N 97.719837°W / 30.388206; -97.719837Transportasi umumCapital MetroRapid Braker/Stadium stationMcKalla Place...

 

Learjet 31 adalah Amerika jet bisnis sepuluh kursi (dua awak dan delapan penumpang) bermesin ganda, kecepatan tinggi. Diproduksi oleh Learjet (anak perusahaan dari Bombardier) sebagai penerus Learjet 29. Penerbangan pertama dari LJ31 berlangsung pada 11 Mei 1987. Varian Learjet 31A diperkenalkan pada bulan Oktober 1990. Versi ini fitur peningkatan kecepatan jelajah, sistem avionik digital dengan EFIS disediakan oleh AlliedSignal (hari ini Honeywell) dan perubahan tata letak instrumen panel. ...

 

Book by Frederick Forsyth This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2021) (Learn how and when to remove this message) The Devil's Alternative First editionAuthorFrederick ForsythCountryUnited KingdomLanguageEnglishGenreThrillerPublisherHutchinsonPublication date1979Media typePrint (Hardback & Paperback)Pages478ISBN0-09-138870-8 The Devil's ...

Boissy-le-Reposcomune Boissy-le-Repos – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementÉpernay CantoneSézanne-Brie et Champagne TerritorioCoordinate48°51′N 3°39′E / 48.85°N 3.65°E48.85; 3.65 (Boissy-le-Repos)Coordinate: 48°51′N 3°39′E / 48.85°N 3.65°E48.85; 3.65 (Boissy-le-Repos) Altitudine160 m s.l.m. Superficie15,4 km² Abitanti208[1] (2009) Densità13,51 ab./km² A...

 

Squash at the Asian GamesSquashFirst event1998 BangkokOccur everyfour yearsLast event2018 JakartaNext event2022 HangzhouBest Malaysia Squash is an Asian Games sport since the 1998 edition and has been held at every edition since. Editions Games Year Host city Best nation XIII 1998 Bangkok, Thailand  Pakistan XIV 2002 Busan, South Korea  Malaysia XV 2006 Doha, Qatar  Malaysia XVI 2010 Guangzhou, China  Malaysia XVII 2014 Incheon, South Korea  Malaysia XVIII 2018 ...

 

Fresney-le-PuceuxcomuneFresney-le-Puceux – Veduta LocalizzazioneStato Francia Regione Normandia Dipartimento Calvados ArrondissementCaen CantoneThury-Harcourt TerritorioCoordinate49°04′N 0°22′W / 49.066667°N 0.366667°W49.066667; -0.366667 (Fresney-le-Puceux)Coordinate: 49°04′N 0°22′W / 49.066667°N 0.366667°W49.066667; -0.366667 (Fresney-le-Puceux) Superficie9,61 km² Abitanti700[1] (2009) Densità72,84 ab./km² A...

 Wikiproject Science Topics list Target articles Guidelines Templates Members  Science Project‑class Science portalThis page is within the scope of WikiProject Science, a collaborative effort to improve the coverage of Science on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.ScienceWikipedia:WikiProject ScienceTemplate:WikiProject Sciencescience articlesProjectThis page does not require a rat...

 

نهر كام   المنطقة البلد المملكة المتحدة  الخصائص الطول 65 كيلومتر  تعديل مصدري - تعديل   52°20′53.79″N 000°15′09.04″E / 52.3482750°N 0.2525111°E / 52.3482750; 0.2525111 (01 - Pope's Corner) نهر كام نهر في شرق إنجلترا يمتد لأكثر من 64 كم من كامبردج ويحاذي فيها كلية كامبردج الشهيرة حتى يلت�...

 

This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (January 2023) (Learn how and when to remove this message) .белIntroduced2014TLD typeInternationalised (Cyrillic) country code top-level domainStatusactive[1]Intended useEntities connected with BelarusRegistere...

Kumi Odori Kumi Odori adalah seni drama tari yang berasal dari Okinawa.[1][2][3] Bentuk seni pertunjukkan ini membawa elemen-elemen asli budaya Okinawa, yang dipadukan dengan seni drama Jepang dan Opera Tionghoa. Kumi Odori merupakan salah satu tradisi Okinawa terpenting karena di dalamnya memasukkan unsur permainan alat musik Ryukyu, lagu dan dialog Bahasa Okinawa Klasik yang telah langka.[2] Pada tahun 2010, Kumi Odori secara resmi ditetapkan sebagai Warisan ...

 

1990 film by Steve Barron Teenage Mutant Ninja TurtlesTheatrical release posterDirected bySteve BarronScreenplay by Todd W. Langen Bobby Herbeck Story byBobby HerbeckBased onCharactersby Kevin EastmanPeter LairdProduced by Kim Dawson Simon Fields David Chan Starring Judith Hoag Elias Koteas CinematographyJohn FennerEdited by William D. Gordean Sally Menke James R. Symons Music byJohn Du PrezProductioncompanies Golden Harvest Entertainment Company[1] Limelight Productions[1] 88...

 

Yangon United FC ရန်ကုန် ယူနိုက်တက် ဘောလုံး အသင်းNama lengkapYangon United Football ClubJulukanThe LionsBerdiri2009StadionThuwunna Stadium(Kapasitas: 32,000)Pemilik Tay Za[1]CEO Sai Khin Maung Aye[2]Manajer Ivan Venkov Kolev[3]LigaLiga Nasional Myanmar2023ke-2Situs webSitus web resmi klub Musim ini Yangon United Football Club (bahasa Burma: ရန်ကုန် ယူနိုက်တက် ဘော�...

This article is about the American actress. For the Canadian actress, see Jaclyn A. Smith. For the American rower, see Jaclyn Smith (rower). American actress Jaclyn SmithSmith in June 2006Born (1945-10-26) October 26, 1945 (age 78)Houston, Texas, U.S.Alma materTrinity University (Texas) (unfinished)Balanchine School of American BalletOccupationActressYears active1968–presentKnown forCharlie's AngelsThe Bourne IdentityChristine CromwellThe DistrictThe Night They Saved Ch...

 

Concepts from linear algebra Characteristic root redirects here. For the root of a characteristic equation, see Characteristic equation (calculus). In linear algebra, an eigenvector (/ˈaɪɡən-/ EYE-gən-) or characteristic vector is a vector that has its direction unchanged by a given linear transformation. More precisely, an eigenvector, v {\displaystyle \mathbf {v} } , of a linear transformation, T {\displaystyle T} , is scaled by a constant factor, λ {\displaystyle \lambda } , wh...