Maharani Jitō
|
Read other articles:
This article is part of a series aboutDmitry Medvedev Former Prime Minister of Russia Former President of Russia Early life Political views Medvedev Doctrine Elections 2008 (campaign) Presidency Constitutional reform Economic reform Inauguration International trips Police reform Obama-Medvedev Commission Premiership First cabinet Second cabinet Media gallery vte The amendments of 2008, which were proposed in November 2008 and came into force on 31 December 2008, were the first substantial am...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Le Dian HotelInformasi umumLokasi Serang, IndonesiaAlamatJalan Jenderal Sudirman No 88, Serang, Banten 42118Situs webLe Dian Hotel Le Dian Hotel adalah hotel 4-bintang terletak di lokasi yang prima jantung Kota Serang, ibu kota Provinsi Banten bagi yan...
Данио-рерио Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые рыбыИн�...
Grèceau Concours Eurovision 2019 Données clés Pays Grèce Chanson Better Love Interprète Katerine Duska Langue Anglais Sélection nationale Radiodiffuseur ERT Type de sélection Sélection interne Date 14 février 2019 (artiste)6 mars 2019 (chanson) Concours Eurovision de la chanson 2019 Position en demi-finale 5e (185 points, qualifiée) Position en finale 21e (74 points) 2018 2020 modifier La Grèce est l'un des quarante et un pays participants du Concours Eurovision de la chanso...
Brazilian telecommunications company EmbratelCompany typeBrand of Claro S.A.IndustryTelecommunicationsFounded16 September 1965 (demerger from Telebrás)29 July 1998 (privatization)SuccessorClaro Brasil (since 2015)HeadquartersRio de Janeiro, BrazilKey peopleJosé Formoso Martínez, (Chairman)ProductsFixed & Mobile telecommunications Internet services Cable televisionRevenue US$ 9.0 billion (2013)Net income US$ 180.0 million (2013)Number of employees12,000ParentClaro (América M�...
New Zealand table tennis player Not to be confused with Chun-Li. Chunli Li Medal record Representing New Zealand Women's table tennis Commonwealth Games 2002 Manchester Singles 2002 Manchester Doubles 2002 Manchester Mixed Doubles 2002 Manchester Team Chunli Li MNZM (simplified Chinese: 李春丽; traditional Chinese: 李春麗; pinyin: Lǐ Chūnlì, born 28 February 1962) is a Chinese-born New Zealand female professional table tennis player. She won a gold, silver and two b...
American artist (born 1932) For the wildebeest expert, see Richard Despard Estes. Richard EstesRichard Estes at the Smithsonian American Art Museum, 2014Born (1932-05-14) May 14, 1932 (age 92)Kewanee, IllinoisNationalityAmericanEducationArt Institute of ChicagoKnown forPaintingNotable workTelephone BoothsMovementPhotorealism Richard Estes (born May 14, 1932, in Kewanee, Illinois) is an American artist, best known for his photorealist paintings. The paintings generally consist of ref...
Jon Dahl Tomasson Informasi pribadiNama lengkap Jon Dahl TomassonTanggal lahir 29 Agustus 1976 (umur 47)Tempat lahir Roskilde, DenmarkTinggi 1,82 m (5 ft 11+1⁄2 in)Posisi bermain PenyerangInformasi klubKlub saat ini FeyenoordNomor 11Karier junior1981–19851985–1992 Solrød BKKøge BKKarier senior*Tahun Tim Tampil (Gol) 1992–19941994–19971997–19981998–20022002–20052005–20072007–20082008– Køge BKSC HeerenveenNewcastle UnitedFeyenoordMilanStuttgartV...
У этого термина существуют и другие значения, см. Лев (значения). Лев в геральдике Изображённый объект лев Медиафайлы на Викискладе Лев и его разновидность леопард — один из старейших и самых популярных геральдических символов[1]. Согласно Лакиеру, лев является ...
Mineral or gemstone of beryllium aluminate ChrysoberylCyclic trilling of chrysoberylGeneralCategoryOxide mineralsFormula(repeating unit)BeAl2O4IMA symbolCbrl[1]Strunz classification4.BA.05Crystal systemOrthorhombicCrystal classDipyramidal (mmm) H-M symbol: (2/m 2/m 2/m)Space groupPbnmUnit cella = 5.481 Å, b = 9.415 Å, c = 4.428 Å; Z = 4IdentificationColorVarious shades of green, emerald-green yellow, blue, brownish to greenish black, may be raspberry-red un...
الوطنية المصرية لاستكشاف وتنمية البترولالشعارمعلومات عامةالبلد مصرالتأسيس 2017 (منذ 7 سنوات)النوع شركة مساهمة حكوميةالمقر الرئيسي القاهرة، مصرموقع الويب nspo/arالمنظومة الاقتصاديةالنشاطات التنقيب عن البترولمناطق الخدمة مصرأهم الشخصياتالمالك القائمة .. جهاز مشروعات �...
Disambiguazione – Se stai cercando il film, vedi Cafarnao - Caos e miracoli. CafarnaoCapernaum (כְּפַר נַחוּם)Sinagoga di CafarnaoCiviltàAsmonei, Civiltà romana UtilizzoVillaggio dei pescatori LocalizzazioneStato Israele DimensioniSuperficie1 728 m² ScaviData scoperta1838 ArcheologoVirgilio Corbo e Stanislao Loffreda Mappa di localizzazione Modifica dati su Wikidata · Manuale Cafàrnao[1] (in ebraico כפר נחום?, Kefar Nahum, che...
موسى نداو معلومات شخصية الميلاد 15 يوليو 1968 (56 سنة) السنغال مركز اللعب لاعب وسط الجنسية السنغال المسيرة الاحترافية سنواتفريقمبارياتأهداف1988–1989 نادي توكيه 3 (0)1989–1992 الوداد الرياضي -1992–1994 الهلال -1994–1995 فارنزي - [تعديل القيم في ويكي بيانات] المواقع مُعرِّف ...
Geometric figure The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation x 2 − y 2 = 1. {\displaystyle x^{2}-y^{2}=1.} In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length r = x 2 − y 2 . {\displaystyle r={\sqrt {x^{2}-y^{2}}}.} Whereas the unit circle surrounds its center, the un...
Payment card with a monetary value stored on the card itself The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (December 2010) (Learn how and when to remove this message) A U.S. Navy clerk holds a keypad for a customer to enter his Navy Cash Card personal identification number aboard the amphibious ass...
1973 studio album by Ivan Boogaloo Joe JonesBlack WhipStudio album by Ivan Boogaloo Joe JonesReleased1973RecordedJuly 25, 1973StudioBroadway Recording Studios, New York CityGenreJazzLabelPrestigePR 10072ProducerOzzie CadenaIvan Boogaloo Joe Jones chronology Snake Rhythm Rock(1972) Black Whip(1973) Sweetback(1975) Black Whip is the eighth album by guitarist Boogaloo Joe Jones which was recorded in 1973 and released on the Prestige label.[1][2] Reception Professional rat...
IratyDatos generalesNombre Iraty Sport ClubApodo(s) AzulãoFundación 21 de abril de 1914Presidente Odair Sérgio Marochi Filho[1]InstalacionesEstadio Estadio Coronel Emílio Gomes Irati, BrasilCapacidad 4 322 espectadores[2]Inauguración 1950Uniforme Titular Alternativo Última temporadaLiga 3ª División Paranaense(2021) 4º Página web oficial[editar datos en Wikidata] El Iraty Sport Club es un club de fútbol brasilero de la ciudad de Irati. Fue fundado en 1914 y j...
No debe confundirse con la Batalla del Dombás (2022-presente). Para la intervención militar rusa más amplia, véase Guerra ruso-ucraniana (2014-presente). Guerra del Dombás Parte de la guerra ruso-ucraniana Desde arriba hacia abajo y de izquierda a derecha; Paramilitares prorrusos en Donbás; Un hombre armado dentro del ayuntamiento de Sloviansk; Un tanque ucraniano T-64 durante la Batalla de Debáltseve ;Un edificio de apartamentos en Lisichansk tras el impacto de un misil.Fecha 6 de abr...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Persekutuan Austria-SerbiaEropa Tenggara pada tahun 1881Ditandatangani28 Juni 1881LokasiSerbiaPihak Austria-Hungaria Serbia Persekutuan Austria-Serbia adalah perjanjian bilateral rahasia yang ditandatangani di Beograd pada tanggal 28 Juni 18...
105 ← 106 → 107素因数分解 2×53二進法 1101010三進法 10221四進法 1222五進法 411六進法 254七進法 211八進法 152十二進法 8A十六進法 6A二十進法 56二十四進法 4A三十六進法 2Yローマ数字 CVI漢数字 百六大字 百六算木 106(百六、ひゃくろく)は自然数、また整数において、105の次で107の前の数である。 性質 106 は合成数であり、約数は 1, 2, 53 と 106。 約数の和は162。 35番目の�...