Hongmei, Guangdong |
Read other articles:
Rev. Manasseh Cutler, kapelan Perang Revolusi Amerika Serikat yang bertugas dalam Angkatan Bersenjata Kontinental George Washington. Bagian dari seri tentangHierarki Gereja KatolikSanto Petrus Gelar Gerejawi (Jenjang Kehormatan) Paus Kardinal Kardinal Kerabat Kardinal pelindung Kardinal mahkota Kardinal vikaris Moderator kuria Kapelan Sri Paus Utusan Sri Paus Kepala Rumah Tangga Kepausan Nunsio Apostolik Delegatus Apostolik Sindik Apostolik Visitor apostolik Vikaris Apostolik Eksarkus Apostol...
EnkiDewa Pencipta, Kecerdasan, Kerajinan, Air, Air laut, Air danau, Kesuburan, Semen, Sihir, PerusakGambar Enki di Segel Adda, segel silinder Akkadia kuno yang berasal dari sekitar tahun 2300 SMSimbolKambing, Ikan, chimera Kambing-ikanInformasi pribadiNinhursag/Ki, Ninsar, Ninkurra, DamkinaAnakNinsar, Ninkurra, Uttu, NintiOrang tuaAnu dan Nammu Enki (/ˈɛŋki/; bahasa Sumeria: dEN.KI(G)𒂗𒆠) adalah Dewa Sumeria untuk air, pengetahuan (gestú), perusak, kerajinan (gašam), dan pencipta (n...
Pikiran RakyatDari Rakyat - Oleh Rakyat - Untuk RakyatTipeSurat kabar harianFormatLembar lebarPemilikGrup Pikiran RakyatPenerbitPikiran Rakyat BandungDidirikan24 Maret 1966; 58 tahun lalu (1966-03-24)BahasaIndonesiaPusatBandung, IndonesiaSitus webwww.pikiran-rakyat.comArsip daring gratisePaper Pikiran Rakyat Pikiran Rakyat adalah surat kabar harian yang terbit di Bandung, Indonesia. Peredarannya meliputi Jawa Barat dan Banten. Sejarah Pada Bulan Januari 1966, di Kota Bandung terdapat sej...
NET. RiauPT Riau Channel TelevisiPekanbaru, RiauIndonesiaSaluranDigital: 33 dan 39 UHFVirtual: 6SloganKini Makin AsikPemrogramanJaringan televisiNET.KepemilikanPemilikNet Visi Media (via PT Mitra Media Pekanbaru)RiwayatDidirikan20032008 (didirikan kembali)Siaran perdanaSeptember 2011Bekas tanda panggilRiau ChannelBekas nomor kanal38 UHF (analog)36 UHF (analog)32 UHF (analog)Bekas afiliasiIndependen (2003, 2011-2014)TV7 (2003-2004)Q Channel/QTV/BeritaSatu (2004-2005, 2013-2014)Informasi teknis...
PausYohanes IIIAwal masa kepausan561Akhir masa kepausan7 Juli 574PendahuluPelagius IPenerusBenediktus IInformasi pribadiNama lahirYohanes KatelinusLahirtanggal tidak diketahuiRoma, ItaliaWafat7 Juli 574Roma, ItaliaPaus lainnya yang bernama Yohanes Paus Yohanes III, nama lahir Yohanes Katelinus (???-7 Juli 574), adalah Paus Gereja Katolik Roma sejak 561 hingga 7 Juli 574. Ia berasal dari sebuah keluarga istimewa Romawi, dan merupakan putra dari Anastasius yang bergelar illustris. Walaupun menj...
Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...
King of Lagash En-hegalKing of LagashInscription For En-hegal, King of Lagash (𒂗𒃶𒅅 𒈗𒂠 𒉢𒁓𒆷), in the Tablet of En-hegalReignc. 2570 BCESuccessorLugalshaengurDynasty1st dynasty of Lagash Lagashclass=notpageimage| Lugalshaengur was governor of Lagash, circa 2600 BCE. En-hegal, also Enhengal (Sumerian: 𒂗𒃶𒅅, en-ḫe₂-ŋal₂), was possibly an ancient ruler of the Sumerian city-state of Lagash.[1] Only one inscription mentioning him is known, the Tabl...
Public company registered under the corporate law of the European Union This article is part of a series onCorporate law By jurisdiction Anguilla Australia BVI Canada Cayman Islands India South Africa UK United States Vietnam European Union France Germany General corporate forms Company Conglomerate Cooperative Corporation Holding company Joint-stock Partnership General Limited Limited liability Private limited Shell corporation Shelf corporation Sole proprietorship Corporate formsby jurisdic...
此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...
Voce principale: Sportgemeinschaft 09 Wattenscheid. Sportgemeinschaft 09 WattenscheidStagione 2002-2003Sport calcio Squadra Wattenscheid 09 Allenatore Hans Bongartz Regionalliga nord4° posto Maggiori presenzeCampionato: Matlik (34)Totale: Matlik (34) Miglior marcatoreCampionato: Löbe (17)Totale: Löbe (17) StadioLohrheidestadion Maggior numero di spettatori5 613 vs. Rot Weiss Essen Minor numero di spettatori795 vs. Dresdner Media spettatori1 655 2001-2002 2003-2004 Si invita...
Indian Islamic scholar (1826–1905) Maulana Rashid Ahmed GangohiPersonalBorn1826[1][2]Gangoh, Ceded and Conquered Provinces, British India[1]Died11 August 1905 (aged 78)[1][2]Gangoh, United Provinces, British IndiaReligionIslamNationalityIndianDenominationSunniJurisprudenceHanafiCreedMaturidiMovementDeobandiMain interest(s)Aqidah, Tafsir, Hadith, FiqhNotable idea(s)Darul Uloom DeobandMilitary serviceYears of service1857Battles/warsIndian War of Indepen...
British Army general, recipient of the Victoria Cross and equestrian Paul Aloysius KennaKenna by Christina BroomBorn16 August 1862Everton, LiverpoolDied30 August 1915 (aged 53)Suvla, Gallipoli, Ottoman TurkeyAllegiance United KingdomService/branch British ArmyYears of service1886–1915 †RankBrigadier-GeneralUnit21st Lancers3rd (Nottinghamshire and Derbyshire) Mounted Brigade[1]Battles/warsMahdist WarSecond Boer WarThird Somaliland ExpeditionWorld War IAwards...
Bladed weapon longer than a knife or dagger For other uses, see Sword (disambiguation). Swiss longsword, 15th or 16th century A sword is an edged, bladed weapon intended for manual cutting or thrusting. Its blade, longer than a knife or dagger, is attached to a hilt and can be straight or curved. A thrusting sword tends to have a straighter blade with a pointed tip. A slashing sword is more likely to be curved and to have a sharpened cutting edge on one or both sides of the blade. Many swords...
Part of the LGBT rights seriesLegal status ofsame-sex unions Marriage Andorra Argentina Australia Austria Belgium Brazil Canada Chile Colombia Costa Rica Cuba Denmark Ecuador Estonia Finland France Germany Greece Iceland Ireland Liechtenstein* Luxembourg Malta Mexico Nepal Netherlands1 New Zealand2 Norway Portugal Slovenia South Africa Spain Sweden Switzerland Taiwan United Kingdom3 United States4 Uruguay Recognized Israel5 Civil unions andregistered partnerships Bolivia Croatia Cyprus Czech...
Charles Kent (Photoplay Magazine, marzo 1916) Charles Kent (Londra, 18 giugno 1852 – Brooklyn, 21 maggio 1923) è stato un regista e attore inglese naturalizzato statunitense. Americano, di origini britanniche, Kent lavorò esclusivamente nel cinema muto. Recitò in ben 141 film tra il 1908 e il 1923 e ne diresse 36 tra il 1908 ed il 1913. Nacque a Londra, Inghilterra e morì a Brooklyn, New York. Indice 1 Filmografia 1.1 Attore 1.2 Regista 1.3 Sceneggiatore 1.4 Produttore 2 Note 3 Altri pr...
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: サーフィン – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2019年4月) サーフィンをする男性 サーフィン(英: surfin...
この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 独自研究が含まれているおそれがあります。(2022年6月) 正確性に疑問が呈されています。(2022年6月) レオ3世 第96代 ローマ教皇 レオ3世(カールに帝冠を授けるレオ3世)教皇就任 795年12月26日教皇離任 816年6月12日先代 ハドリアヌス1世次代 ステファヌス4世個人情報出生 750年?東...
French mathematician (1843–1904) Paul Tannery Paul Tannery (20 December 1843 – 27 November 1904) was a French mathematician and historian of mathematics. He was the older brother of mathematician Jules Tannery, to whose Notions Mathématiques he contributed an historical chapter. Though Tannery's career was in the tobacco industry, he devoted his evenings and his life to the study of mathematicians and mathematical development. Life and career Tannery was born in Mantes-la-Jolie on 20 Dec...
Algebra of formal sums Not to be confused with Free group. In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian...