Dewan Perwakilan Rakyat Daerah Kabupaten Mimika
|
Read other articles:
Amalraj Anthony ArputharajAmalraj Anthony Arputharaj (2017)Personal informationNama lengkapAmalraj Anthony ArputharajKebangsaan IndiaLahir24 Januari 1986 (umur 38)Polur, Tamil Nadu, IndiaTinggi16 m (52 ft 6 in)Berat64 kg (141 pon; 10,1 st) Rekam medali Putra Tenis meja Mewakili India Commonwealth Games 2014 Glasgow Men's doubles 2018 Gold Coast Men's team]] Asian Games 2018 Jakarta Men's team Amalraj Anthony Arputharaj (lahir 24 Januari 1986) adal...
Diagram ilustrasi analisis SWOT Strategi Dimensi utama Strategi • Manajemen strategis Strategi militer • Strategi berpikir Perencanaan strategis • Teori permainan Strategi belajar Para pemikir Michael Porter • Henry Mintzberg Bruce Henderson • Gary Hamel • C. K. Prahalad Jim Collins • Liddell Hart Carl Von Clausewitz • Sun Tzu Adrian Slywotzky • Chris Zook Konsep Model bisnis Competitive advantage • Experience curve R...
Peta menunjukkan lokasi Datu Abdullah Sangki Data sensus penduduk diDatu Abdullah Sangki Tahun Populasi Persentase 199513.847—200015.9113.03%200733.25910.70% Datu Abdullah Sangki adalah munisipalitas yang terletak di provinsi Maguindanao, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 37.426 jiwa atau 5.301 rumah tangga. Pembagian wilayah Secara administratif Datu Abdullah Sangki terbagi menjadi 10 barangay, yaitu:[1] Banaba Dimampao Guinibon Kaya-kaya Magano...
Elang jawa Nisaetus bartelsi Status konservasiGentingIUCN22696165 TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoAccipitriformesFamiliAccipitridaeGenusNisaetusSpesiesNisaetus bartelsi (Stresem., 1924) Tata namaSinonim taksonJavan hawk-eagle (en) ProtonimSpizaetus nipalensis bartelsi DistribusiEndemikJawa lbs Elang jawa (Nisaetus bartelsi) adalah salah satu spesies elang berukuran sedang dari keluarga Accipitridae dan genus Nisaetus yang endemik di Pulau Jawa. Satwa ini dianggap identik de...
Daniel C. BurbankLahir27 Juli 1961 (umur 62)Manchester, Connecticut, ASStatusPurnawirawan[1]KebangsaanAmerika SerikatPekerjaanGarda PesisirKarier luar angkasaAntariksawan NASAPangkatKapten Garda Pesisir Amerika SerikatWaktu di luar angkasa188 hariSeleksi1996 NASA GroupMisiSTS-106, STS-115, Soyuz TMA-22 (Ekspedisi 29/30)Lambang misi Daniel Christopher Burbank (lahir 27 Juli 1961) adalah seorang purnawirawan[1] antariksawan Amerika Serikat dan veteran dua misi pesawat ulan...
Jebres beralih ke halaman ini. Untuk Kelurahan yang bernama Jebres, lihat pula Jebres, Jebres, Surakarta.. JebresKecamatanPeta lokasi Kecamatan JebresNegara IndonesiaProvinsiJawa TengahKotaSurakartaPemerintahan • Camat-Populasi • Total138,624 (2.010) jiwaKode Kemendagri33.72.04 Kode BPS3372040 Luas12,58 km²Desa/kelurahan11 Jebres (Jawa: ꦗꦺꦧꦿꦺꦱ꧀, translit. Jèbrès) adalah kecamatan di Kota Surakarta yang terletak di bagian timur. Wilay...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2021) جهاد خازر المجالي معلومات شخصية الوفاة 6 يونيو 2021 عَمَّان مواطنة الأردن الحياة العملية المهنة قاضٍ، وجندي اللغات العربية تعديل مصدري - تع...
American politician Cooper Kinderdine WatsonMember of the U.S. House of Representativesfrom Ohio's 9th districtIn officeMarch 4, 1855 – March 3, 1857Preceded byFrederick W. GreenSucceeded byLawrence W. Hall Personal detailsBorn(1810-06-10)June 10, 1810Jefferson County, KentuckyDiedMay 20, 1880(1880-05-20) (aged 69)Sandusky, OhioResting placeGreenlawn Cemetery, TiffinPolitical partyOppositionSpouseCaroline S. DurkeeChildrenfourSignature Cooper Kinderdine Watson (Jun...
American artistic gymnast Robert NeffFull nameRobert NeffBorn (1995-10-09) October 9, 1995 (age 28)Brookfield, WisconsinDisciplineMen's artistic gymnasticsYears on national team2017–2021 (USA)College teamStanford Cardinal (2015–18)Head coach(es)Syque Caesar Medal record Representing United States Pan American Games 2019 Lima Team 2019 Lima Floor exercise 2019 Lima Pommel horse Representing the Stanford Cardinal NCAA Championships 2017 West Point Horizontal b...
Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Pixiebob – berita · surat kabar · buku · cendekiawan · JSTOR Pixie-bob Nama lain Peri-Bob Shorthair Asal Amerika Serikat Standar ras TICA standar CCA standar ACFA/CAA standar Kucing domestik (Felis catu...
Order of fish For the deceptive online actions by one to another, see Catfishing. This article is about the fish. For other uses, see Catfish (disambiguation). Kaari redirects here. For other uses, see Kaari (disambiguation). CatfishTemporal range: Late Cretaceous – Recent 87.8–0 Ma PreꞒ Ꞓ O S D C P T J K Pg N [1][2] Black bullhead Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii (unranked): Otophysi Order: Silur...
Pour les articles homonymes, voir Collen. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite aucune source et peut contenir des informations erronées (signalé en novembre 2020). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Note...
この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...
土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...
حجر ويلاميت الذي اكتشف في ولاية أوريغون بالولايات المتحدة الرَّجْم[1] أو الحجر النيزكي[1] هو ما بقي من نيزك عند اصطدامه بسطح الأرض أو بسطح كوكب آخر. وتنتج حفرة عن أثر الاصطدام. ويعتقد العلماء أنها أجزاء من كويكبات أو مذنبات وعادة ما يتراوح أحجامها بين الصخور الصغيرة �...
Torrent index and forum website AnimeSukiType of siteAnime torrent indexAvailable inEnglishOwnerGHDproCreated byGHDproURLwww.animesuki.comCommercialNoLaunchedDecember 26, 2002; 21 years ago (2002-12-26)Current statusActive AnimeSuki (from Japanese anime and suki (好き, like or love)) is a website and once considered ... the largest database of BitTorrent anime shows[1] that focused on providing unlicensed anime fansubs using the BitTorrent peer-to-pe...
15th-century Bishop of Coventry and Lichfield, Bishop of St David's, and Bishop of Exeter John CatterickBishop of ExeterAppointed20 November 1419Term ended28 December 1419PredecessorEdmund StaffordSuccessorEdmund LaceyPersonal detailsDied28 December 1419DenominationCatholicPrevious post(s)Bishop of St David'sBishop of Coventry and Lichfield John Catterick[a] (died 1419) was a medieval Bishop of St David's, Bishop of Coventry and Lichfield, and Bishop of Exeter. Catterick was consecra...
1992 single by Boyz II Men Please Don't GoSingle by Boyz II Menfrom the album Cooleyhighharmony ReleasedMarch 17, 1992GenreR&BLength4:26LabelMotownSongwriter(s)Nathan MorrisProducer(s)Dallas AustinBoyz II Men singles chronology Uhh Ahh (1991) Please Don't Go (1992) End of the Road (1992) Please Don't Go is a song by Boyz II Men from their album Cooleyhighharmony. It reached number 49 on the US Billboard Hot 100 in 1992 and number three on the New Zealand Singles Chart in 1993. Charts ...
1987 Australian Grand Prix Race 16 of 16 in the 1987 Formula One World Championship Race detailsDate 15 November 1987Official name LII Foster's Australian Grand PrixLocation Adelaide Street CircuitAdelaide, South AustraliaCourse Temporary street circuitCourse length 3.780 km (2.362 miles)Distance 82 laps, 309.960 km (193.684 miles)Weather SunnyPole positionDriver Gerhard Berger FerrariTime 1:17.267Fastest lapDriver Gerhard Berger FerrariTime 1:20.416 on lap 72PodiumFirst Gerhard Berger Ferra...
Basic integral in elementary calculus The integral as the area of a region under a curve. A sequence of Riemann sums over a regular partition of an interval. The number on top is the total area of the rectangles, which converges to the integral of the function. The partition does not need to be regular, as shown here. The approximation works as long as the width of each subdivision tends to zero. Part of a series of articles aboutCalculus ∫ a b f ′ ( t ) d t = f ( b ) − f...