Andreas Ottl
|
Read other articles:
γ Boötis γ Boötis Data pengamatan Epos J2000 Ekuinoks J2000 Rasi bintang Boötes Asensio rekta 14h 32m 04.6719s Deklinasi +38° 18′ 29.709″ Magnitudo tampak (V) 3.0 Ciri-ciri Kelas spektrum A7III Indeks warna U−B 0.12 Indeks warna B−V 0.19 Indeks warna R−I 0.08 Jenis variabel Delta Scuti variable AstrometriKecepatan radial (Rv)-36.5 km/sGerak diri (μ) RA: -115.55 mdb/thn Dek.: 151.87 mdb/thn Parala...
2017 film This article is about the 2017 film. For 1932 film, see Insult (film). The InsultInternational film posterArabicقضية رقم ٢٣ LiterallyCase No. 23 Directed byZiad DoueiriWritten by Ziad Doueiri Joelle Touma Produced by Rachid Bouchareb Jean Bréhat Julie Gayet Antoun Sehnaoui Nadia Turincev Starring Adel Karam Kamel El Basha Diamand Bou Abboud CinematographyTommaso FiorilliEdited byDominique MarcombeMusic byÉric NeveuxProductioncompanies Ezekiel Films Tessalit Productions Ro...
Brojo lintang Brojo lintang sedang berbunga Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Monokotil Ordo: Asparagales Famili: Iridaceae Genus: Iris Spesies: I. domestica Nama binomial Iris domestica Sinonim Belamcanda chinensis (L.) DC. Belamcanda chinensis var. curtata Makino Belamcanda chinensis f. flava Makino Belamcanda chinensis var. taiwanensis S.S.Ying Belamcanda chinensis f. vulgaris Makino Belamcanda flabellata Grey Belamcan...
Association football club in England Football clubYate TownFull nameYate Town Football ClubNickname(s)The BluebellsFounded1906GroundLodge Road, YateCapacity2,000 (236 seated)[1]ChairmanColin PickManagerDarren MullingsLeagueSouthern League Division One South2022–23Southern League Premier Division South, 21st of 22 (relegated) Home colours Away colours Players warming up before a match at the team's Lodge Road ground Yate Town Football Club is a football club based in Yate, Gloucester...
Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...
This article is about the year 312. For the number, see 312 (number). For other uses, see 312 (disambiguation). This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: 312 – news · newspapers · books · scholar · JSTOR (February 2024) Calendar year Millennium: 1st millennium Centuries: 3rd centur...
This template was considered for deletion on 2020 August 29. The result of the discussion was no consensus. Technology Template‑class Technology portalThis template is within the scope of WikiProject Technology, a collaborative effort to improve the coverage of technology on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.TechnologyWikipedia:WikiProject TechnologyTemplate:WikiProject TechnologyTechnol...
2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 % 获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...
إحصاءصنف فرعي من رياضيات، علوم شكليةجزء من رياضيات تطبيقيةيمتهنه عالم إحصاء (إحصائي)[1]فروع إحصاء وصفي — إحصاء استدلالي الموضوع بيانات، توزيع احتمالالتاريخ تاريخ علم الإحصاءتعديل - تعديل مصدري - تعديل ويكي بيانات مخطط منحنى جرسي يظهر التوزع الطبيعي الذي يستخدم في الع�...
Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...
Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...
Dalam nama Korean ini, nama keluarganya adalah Yoo. Yoo Hwe-seungInformasi latar belakangLahir28 Februari 1995 (umur 29)Seoul, Korea SelatanGenreK-popPekerjaanPenyanyiPemeran teater musikalTahun aktif2017–sekarangLabelFNC EntertainmentNama KoreaHangul유회승 Hanja柳會勝 Alih AksaraYu Hoe-seungMcCune–ReischauerYu Hoesŭng Yoo Hwe-seung (lahir 28 Februari 1995)[1] adalah penyanyi dan pemeran teater musikal asal Korea Selatan. Ia adalah anggota dari band asal Korea Selatan ...
Elector Frederick III the Wise, John and Duke George, Bartgroschen 1492, Mmz. cloverleaf, Zwickau and Schneeberg (Krug 1878) The Bartgroschen (beard groschen) was a Saxon coin minted in 1492 and 1493 and embossed with an image of the bearded Duke Frederick III, the Wise (1486–1525). A total of 205,000 pieces were struck[1] at the mints of Zwickau and Schneeberg. The groschen were the first Saxon coins with a portrait of the regent.[2] History The groschen coins known as Bart...
Map showing the location of the ports listed on this page The following is a list of the ports in Spain declared to be of general interest and thus, under the exclusive competence of the General Administration of the State.[1] They are operated by 28 different port authorities, which are coordinated in turn by Puertos del Estado, a State-owned company. Port Port Authority Region Cargo tonnage in 2019(MTn) Ref. Bay of Algeciras Bay of Algeciras Andalusia 109.4 [2] Tarifa Bay o...
For the album by British musician Joe Jackson, see Jumpin' Jive (album). Jumping Jive (also known as (Hep-Hep!) The Jumpin' Jive) is a famous jazz/swing composition, written by Cab Calloway, Frank Froeba, and Jack Palmer.[1] Originally recorded on 17 July 1939, on Vocalion Records, it sold over a million copies and reached #2 on the Pop chart.[2][1][3] Calloway performs the song with his orchestra and the Nicholas Brothers in the 1943 musical film Stormy Weathe...
Football match2016 Angola Super CupSupertaça de Angola 2016 Rec do Libolo Bravos Maquis Girabola Taça Angola 6 0 DateFebruary 7, 2016 (2016-02-07)VenueEstádio dos Coqueiros, LuandaRefereeBenjamin AndradeAttendance2,700← 2015 2017 → The 2016 Supertaça de Angola (29th edition) was contested by Recreativo do Libolo, the 2015 Girabola champion and Bravos do Maquis, the 2015 cup winner. Recreativo do Libolo was the winner, making it is's 2nd title in a row.[1]...
American economist Dean BakerBorn (1958-07-13) July 13, 1958 (age 65)Columbus, OhioAcademic careerInstitutionCenter for Economic and Policy ResearchBucknell UniversityFieldEconomicsmacroeconomicsReal estate economicsUrban economics[1]Alma materSwarthmore College (BA)University of Denver (MA)University of Michigan (PhD)DoctoraladvisorW. H. Locke Anderson[2]Information at IDEAS / RePEc WebsiteDeanBaker.net Dean Baker (born July 13, 1958) is an American macroe...
La Vierge d'Istanbul Publicité parue dans Motion Picture News Données clés Titre original The Virgin of Stamboul Réalisation Tod Browning Scénario Tod BrowningWilliam Parker Acteurs principaux Priscilla DeanWheeler OakmanWallace Beery Sociétés de production The Universal Film Manufacturing Company Pays de production États-Unis Genre Aventure Durée 70 minutes Sortie 1920 Pour plus de détails, voir Fiche technique et Distribution. modifier Priscilla Dean et Wheeler Oakman La Vie...
Pour les articles homonymes, voir Persée (homonymie). Cet article est une ébauche concernant la musique classique et l’opéra ou l’opérette. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Persée Données clés Genre tragédie lyrique Nbre d'actes cinq Musique Jean-Baptiste Lully Livret Philippe Quinault Langueoriginale français Création 18 avril 1682Académie Royale de Musique modifier Persée est une...
Quadrilateral whose vertices can all fall on a single circle Examples of cyclic quadrilaterals In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadr...