2004 KE19
|
Read other articles:
Universitas Kristen Palangka RayaLambang Universitas Kristen Palangka RayaMotoTakut Akan Tuhan Adalah Permulaan Pengetahuan (Amsal 1 : 7)JenisPerguruan Tinggi SwastaDidirikan18 Mei 1987[1]RektorProf. Dr. Joni Bungai, M.Pd.Staf akademik42 (T.A 2021/2022)[1]Jumlah mahasiswa614 (T.A 2021/2022)[1]Alamat- Kampus AJalan R.T.A. Milono KM. 8,5 - Kampus B Jalan P. Diponegoro, Palangka Raya, Kalimantan Tengah, IndonesiaKampusUrbanWarnaHijau Nama julukanUNKRIP (Akronim...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Tradisi kias merupakan tradisi khas masyarakat Lampung yang menyatukan adat peminggir dengan adat pepadun. Kias dinyanyikan atau ditampilkan sehabis sholat Isya hingga menjelang subuh seperti halnya pertunjukan wayang kulit di Jawa. Tradisi kias ini b...
Scottish footballer Bobby Finan Personal informationFull name Robert Joseph FinanDate of birth (1912-03-01)1 March 1912Place of birth Old Kilpatrick, ScotlandDate of death 25 July 1983(1983-07-25) (aged 71)Place of death Old Kilpatrick, ScotlandHeight 5 ft 6+1⁄2 in (1.69 m)[1]Position(s) ForwardSenior career*Years Team Apps (Gls)0000–1933 Yoker Athletic 1933–1947 Blackpool 173 (85)1947–1949 Crewe Alexandra 59 (14)1949–1950 Wigan Athletic 31 (12)Total ...
1951 1958 Élections législatives françaises de 1956 2 janvier 1956 Corps électoral et résultats Votants 22 171 957 82,8 % 2,7 Droite parlementaire – Edgar Faure Liste Centre national des indépendants et paysansMouvement républicain populaire Voix 7 050 188 33,10 % 7,1 Députés élus 214 23 Front républicain – Guy Mollet Liste Section française de l'Internationale ouvrièreParti radicalRépublicains ...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada September 2016. Zalim KishevInformasi pribadiNama lengkap Zalim Zaurbiyevich KishevTanggal lahir 18 Juli 1990 (umur 33)Tinggi 1,70 m (5 ft 7 in)Posisi bermain BekInformasi klubKlub saat ini FC Angusht NazranKarier senior*Tahun Tim Tampil (Gol)200...
Nomura Securities Co., Ltd. 野村證券株式会社JenisAnak perusahaanIndustriJasa keuanganKonsultansi manajemen keuanganDidirikan25 Desember 1925 (1925-12-25) (Osaka, Japan)KantorpusatNihonbashi, Chuo, Tokyo, JepangWilayah operasiSeluruh duniaTokohkunciKoji Nagai (chairman)Toshio Morita (presiden)ProdukJasa keuangan[1]Jasa sekuritasIndukNomura HoldingsSitus webNomura Securities Kantor pusat Nomura Securities Co. Nomura Securities Co., Ltd. (野村證券株式会社code: ja is ...
Koog aan de ZaanGeneral informationLocationNetherlandsCoordinates52°27′28″N 4°48′20″E / 52.45778°N 4.80556°E / 52.45778; 4.80556Line(s)Den Helder–Amsterdam railwayServices Preceding station Nederlandse Spoorwegen Following station Zaandijk Zaanse Schanstowards Uitgeest NS Sprinter 4000 Zaandamtowards Rotterdam Centraal NS Sprinter 7400 Zaandamtowards Driebergen-Zeist LocationKoog aan de ZaanLocation within Northern RandstadShow map of Northern RandstadKoo...
For the overthrusting of one ice sheet over another, see Finger rafting. The transport of various materials by drifting ice This debris-covered iceberg was calved from the terminus of Alaska's Sheridan Glacier. Ice rafting is the transport of various materials by ice. Various objects deposited on ice may eventually become embedded in the ice. When the ice melts after a certain amount of drifting, these objects are deposited onto the bottom of the water body, e.g., onto a river bed or an ocean...
Place in Opole Voivodeship, PolandNamysłówMarket Square with the Town Hall and the Church of Saints Peter and Paul in the background FlagCoat of armsNamysłówShow map of PolandNamysłówShow map of Opole VoivodeshipCoordinates: 51°4′22″N 17°42′25″E / 51.07278°N 17.70694°E / 51.07278; 17.70694Country PolandVoivodeship OpoleCountyNamysłówGminaNamysłówGovernment • MayorJacek Fior (KO)Area • Total22.62 km2 (8.73...
1850 United States House of Representatives election in Florida ← 1848 October 7, 1850 1852 → Nominee Edward Carrington Cabell John Beard Party Whig Democratic Popular vote 4,531 4,050 Percentage 52.80% 47.20% County results Cabell: 50–59% 60–69% Kain: 50–59% 60–69% 70–79% ...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: KXPK – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this message) Radio station in Evergreen, ColoradoKXPKEvergreen, ColoradoBroadcast areaDenver-BoulderFrequency96.5 MHzBrandingLa Tricolor 96.5ProgrammingFormatRegion...
FatherEdward P. TivnanS.J.Born(1882-03-10)March 10, 1882Salem, MADiedMarch 31, 1937(1937-03-31) (aged 55)Manhattan, New York, NYOccupationPresident of Fordham UniversityAcademic backgroundAlma materGeorgetown UniversityAcademic workDisciplineChemistry Edward Patrick Tivnan, S.J. (1882–1937) was president of Fordham University from 1919 until 1924.[1] Biography Edward P. Tivnan was born in Massachusetts on March 10, 1882.[2][3] Tivnan was appointed president of ...
此條目没有列出任何参考或来源。 (2022年2月23日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 阿巴埃特(葡萄牙語:Abaeté)是巴西米纳斯吉拉斯州的一座城市,面积1,816平方公里,人口22,474人(2007年)。1870年,當地形成基層政權。 这是一篇與巴西相關的地理小作品。你可以通过编辑或修订扩充...
ألما كارلين (بالسلوفينية: Alma Karlin) معلومات شخصية اسم الولادة (بالسلوفينية: Alma Ida Wilibalda Maximiliana Karlin) الميلاد 12 أكتوبر 1889 [1] تسليه[2][1] الوفاة 14 يناير 1950 (60 سنة) [2][1] سبب الوفاة سرطان مواطنة مملكة يوغوسلافيا مملكة الصرب والكروات والسلو...
Swedish online newspaper This article is part of a series onConservatism in Sweden Ideologies Christian democracy Liberal Moderate Nationalist Principles Cameralism Duty Elitism Meritocracy Law and order Moderation Lagom Monarchism National romanticism Nationalism Folkhemmet Ordered liberty Patriotism Property rights Prudence Rule of law Social order State church Swedish culture Tradition History Hats Kristersson cabinet Tidö Agreement Peasant armament support march Courtyard Speech Swedish ...
The Southern Discomfort studies examined why the Labour Party failed to win the 1992 General Election in which Neil Kinnock (pictured in 2007) unexpectedly lost to John Major. The Southern Discomfort pamphlets were a series of studies by Labour MP Giles Radice, published by the Labour-affiliated think tank the Fabian Society that examined attitudes towards the party in the south of England after the 1992 general election defeat.[1] The studies found that voters in marginal constituen...
عمارة برتغاليةمعلومات عامةالمنطقة البرتغال التأثيراتأحد جوانب البرتغال فرع من architecture of the Earth (en) Portuguese art (en) تعديل - تعديل مصدري - تعديل ويكي بيانات تشمل العمارة البرتغالية العمارة في أراضي البرتغال الحالية وفي البرتغال القارية والأزور والماديرا، إضافة إلى التراث المعمار�...
موسيقى العالممعلومات عامةصنف فرعي من موسيقىموسيقى شائعة تعديل - تعديل مصدري - تعديل ويكي بيانات موسيقى العالم (باللغة الإنجليزية World Music) نوع من الموسيقى والغناء والرقص ذات بعد عالمي، وتضم مجموعة كبيرة من الموسيقى الفولكلورية والقومية لمختلف البلدان والشعوب والقوميات.[1&...
Character in Hamlet Fictional character PoloniusHamlet characterPolonius Behind the Curtain by Jehan Georges Vibert, 1868Created byWilliam ShakespeareIn-universe informationAffiliationKing ClaudiusChildrenOphelia (daughter) Laertes (son) Polonius is a character in William Shakespeare's play Hamlet. He is the chief counsellor of the play's ultimate villain, Claudius, and the father of Laertes and Ophelia. Generally regarded as wrong in every judgment he makes over the course of the play,[1...
Geometrical concept Not to be confused with Cavalieri's quadrature formula. This file represents the Cavalieri's Principle in action: if you have the same set of cross sections that only differ by a horizontal translation, you will get the same volume. In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows:[1] 2-dimensional case: Suppose two regions in a plane are included between two parallel lines i...